
## Boris Nikolayevich Khlebtsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9094458/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters.<br>Nanotechnology, 2006, 17, 5167-5179.                                                                                                           | 1.3 | 368       |
| 2  | Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy.<br>Journal of Biomedical Optics, 2009, 14, 021016.                                                                                          | 1.4 | 181       |
| 3  | Multipole Plasmons in Metal Nanorods:  Scaling Properties and Dependence on Particle Size, Shape,<br>Orientation, and Dielectric Environment. Journal of Physical Chemistry C, 2007, 111, 11516-11527.                                    | 1.5 | 173       |
| 4  | Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites.<br>Theranostics, 2013, 3, 167-180.                                                                                                      | 4.6 | 166       |
| 5  | Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides.<br>ACS Applied Materials & Interfaces, 2015, 7, 6518-6529.                                                                            | 4.0 | 158       |
| 6  | Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. Journal of Biophotonics, 2009, 2, 292-302.                                                              | 1.1 | 144       |
| 7  | Nanocomposites Containing Silica-Coated Gold–Silver Nanocages and<br>Yb–2,4-Dimethoxyhematoporphyrin: Multifunctional Capability of IR-Luminescence Detection,<br>Photosensitization, and Photothermolysis. ACS Nano, 2011, 5, 7077-7089. | 7.3 | 143       |
| 8  | Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Research, 2014, 7, 325-337.                                                                    | 5.8 | 136       |
| 9  | Determination of the Size, Concentration, and Refractive Index of Silica Nanoparticles from Turbidity<br>Spectra. Langmuir, 2008, 24, 8964-8970.                                                                                          | 1.6 | 119       |
| 10 | Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles.<br>International Journal of Molecular Sciences, 2016, 17, 1295.                                                                                 | 1.8 | 113       |
| 11 | SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Research, 2019, 12, 413-420.                                                                                                                     | 5.8 | 105       |
| 12 | Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches. Nanotechnology, 2006, 17, 1437-1445.                                                                                   | 1.3 | 99        |
| 13 | Quantifying the Numbers of Gold Nanoparticles in the Test Zone of Lateral Flow Immunoassay Strips.<br>ACS Applied Nano Materials, 2019, 2, 5020-5028.                                                                                     | 2.4 | 98        |
| 14 | Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Advances in<br>Colloid and Interface Science, 2017, 246, 13-39.                                                                                 | 7.0 | 97        |
| 15 | Overgrowth of Gold Nanorods by Using a Binary Surfactant Mixture. Langmuir, 2014, 30, 1696-1703.                                                                                                                                          | 1.6 | 93        |
| 16 | Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Research, 2016, 9, 2303-2318.                                                                                                                                    | 5.8 | 85        |
| 17 | Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Theranostics, 2020, 10, 2067-2094.                                                                                                                | 4.6 | 85        |
| 18 | Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of<br>4-Nitrobenzenethiol. Journal of Physical Chemistry C, 2018, 122, 5657-5663.                                                                 | 1.5 | 84        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Applied Optics, 2005, 44, 6285.                                                                                      | 2.1 | 82        |
| 20 | Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells. Physical Review B, 2008, 77, .                                                                                                                             | 1.1 | 74        |
| 21 | Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence<br>tomography imaging of skin: Monte Carlo simulations and in vivo study. Journal of Biomedical Optics,<br>2009, 14, 021017.            | 1.4 | 69        |
| 22 | Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer<br>simulations and experiment. Medical Laser Application: International Journal for Laser Treatment and<br>Research, 2007, 22, 199-206.           | 0.4 | 67        |
| 23 | Rational Design of Ultrabright SERS Probes with Embedded Reporters for Bioimaging and<br>Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 30387-30397.                                                                   | 4.0 | 63        |
| 24 | Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology, 2008, 19, 015701.                                                                     | 1.3 | 62        |
| 25 | Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods. Journal of Physical Chemistry C, 2008, 112, 12760-12768.                                                                                                | 1.5 | 60        |
| 26 | A New T-Matrix Solvable Model for Nanorods: TEM-Based Ensemble Simulations Supported by Experiments. Journal of Physical Chemistry C, 2011, 115, 6317-6323.                                                                                | 1.5 | 59        |
| 27 | High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles. Scientific Reports, 2018, 8, 17763.                                                                    | 1.6 | 58        |
| 28 | Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 167, 64-75.                                                                               | 1.1 | 57        |
| 29 | Gold nanoparticles as an adjuvant: Influence of size, shape, and technique of combination with CpG on antibody production. International Immunopharmacology, 2018, 54, 163-168.                                                            | 1.7 | 57        |
| 30 | Can the Light Scattering Depolarization Ratio of Small Particles Be Greater Than 1/3?. Journal of<br>Physical Chemistry B, 2005, 109, 13578-13584.                                                                                         | 1.2 | 56        |
| 31 | Surface-Enhanced Raman Scattering Substrates Based on Self-Assembled PEGylated Gold and<br>Gold–Silver Core–Shell Nanorods. Journal of Physical Chemistry C, 2013, 117, 23162-23171.                                                       | 1.5 | 56        |
| 32 | Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the<br>mouse brain: breakthrough strategies for non-pharmacologic therapy of Alzheimer's disease.<br>Biomedical Optics Express, 2019, 10, 4003. | 1.5 | 56        |
| 33 | Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local<br>dielectric environment. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106, 154-169.                                  | 1.1 | 51        |
| 34 | Enhanced photoinactivation of <i>Staphylococcus aureus</i> with nanocomposites containing plasmonic particles and hematoporphyrin. Journal of Biophotonics, 2013, 6, 338-351.                                                              | 1.1 | 51        |
| 35 | Surface-Enhanced Raman Scattering-Based Lateral-Flow Immunoassay. Nanomaterials, 2020, 10, 2228.                                                                                                                                           | 1.9 | 46        |
| 36 | A protein assay based on colloidal gold conjugates with trypsin. Analytical Biochemistry, 2005, 341,<br>16-21.                                                                                                                             | 1.1 | 45        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Plasmonic Nanopowders for Photothermal Therapy of Tumors. Langmuir, 2012, 28, 8994-9002.                                                                                                                     | 1.6 | 45        |
| 38 | Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages.<br>Nano Research, 2012, 5, 124-134.                                                                          | 5.8 | 42        |
| 39 | SERS substrates formed by gold nanorods deposited on colloidal silica films. Nanoscale Research<br>Letters, 2013, 8, 250.                                                                                    | 3.1 | 42        |
| 40 | Improved size-tunable synthesis and SERS properties of Au nanostars. Journal of Nanoparticle Research, 2014, 16, 1.                                                                                          | 0.8 | 42        |
| 41 | Photodynamic opening of the blood-brain barrier and pathways of brain clearing. Journal of<br>Biophotonics, 2018, 11, e201700287.                                                                            | 1.1 | 42        |
| 42 | Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus. RSC Advances, 2015, 5, 61639-61649.                                                 | 1.7 | 40        |
| 43 | Enhanced solid-phase immunoassay using gold nanoshells: effect of nanoparticle optical properties.<br>Nanotechnology, 2008, 19, 435703.                                                                      | 1.3 | 38        |
| 44 | Reexamination of Surface-Enhanced Raman Scattering from Gold Nanorods as a Function of Aspect<br>Ratio and Shape. Journal of Physical Chemistry C, 2020, 124, 10647-10658.                                   | 1.5 | 38        |
| 45 | In-situ NIR-laser mediated bioactive substance delivery to single cell for EGFP expression based on biocompatible microchamber-arrays. Journal of Controlled Release, 2018, 276, 84-92.                      | 4.8 | 37        |
| 46 | A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers.<br>Journal of Biophotonics, 2019, 12, e201800166.                                                             | 1.1 | 37        |
| 47 | Composite SERS-based satellites navigated by optical tweezers for single cell analysis. Analyst, The, 2015, 140, 4981-4986.                                                                                  | 1.7 | 36        |
| 48 | Ultrasharp light-scattering resonances of structured nanospheres: effects of size-dependent dielectric functions. Journal of Biomedical Optics, 2006, 11, 044002.                                            | 1.4 | 35        |
| 49 | Tunable depolarized light scattering from gold and gold/silver nanorods. Physical Chemistry<br>Chemical Physics, 2010, 12, 3210.                                                                             | 1.3 | 35        |
| 50 | Nanoplasmonically-Induced Defects in Lipid Membrane Monitored by Ion Current: Transient Nanopores<br>versus Membrane Rupture. Nano Letters, 2014, 14, 4273-4279.                                             | 4.5 | 35        |
| 51 | Surface Morphology of a Gold Core Controls the Formation of Hollow or Bridged Nanogaps in<br>Plasmonic Nanomatryoshkas and Their SERS Responses. Journal of Physical Chemistry C, 2016, 120,<br>15385-15394. | 1.5 | 34        |
| 52 | In vitro and in vivo MRI visualization of nanocomposite biodegradable microcapsules with tunable contrast. Physical Chemistry Chemical Physics, 2016, 18, 32238-32246.                                       | 1.3 | 31        |
| 53 | Quantitative cell bioimaging using goldâ€nanoshell conjugates and phage antibodies. Journal of<br>Biophotonics, 2011, 4, 74-83.                                                                              | 1.1 | 29        |
| 54 | Multipolarization Dynamic Light Scattering of Nonspherical Nanoparticles in Solution. Journal of<br>Physical Chemistry C, 2017, 121, 3070-3077.                                                              | 1.5 | 29        |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Tip-Functionalized Au@Ag Nanorods as Ultrabright Surface-Enhanced Raman Scattering Probes for<br>Bioimaging in Off-Resonance Mode. Journal of Physical Chemistry C, 2018, 122, 17983-17993.                                                                | 1.5  | 29        |
| 56 | Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. Materials, 2022, 15, 1606.                                                                                                                         | 1.3  | 29        |
| 57 | Golden Vaterite as a Mesoscopic Metamaterial for Biophotonic Applications. Advanced Materials, 2021, 33, e2008484.                                                                                                                                         | 11.1 | 27        |
| 58 | A solid-phase dot assay using silica/gold nanoshells. Nanoscale Research Letters, 2007, 2, 6-11.                                                                                                                                                           | 3.1  | 25        |
| 59 | Plasmonic photothermal therapy: Approaches to advanced strategy. Lasers in Surgery and Medicine, 2018, 50, 1025-1033.                                                                                                                                      | 1.1  | 22        |
| 60 | Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy.<br>Beilstein Journal of Nanotechnology, 2019, 10, 794-803.                                                                                                 | 1.5  | 22        |
| 61 | Lateral Flow Immunoassay of SARS-CoV-2 Antigen with SERS-Based Registration: Development and Comparison with Traditional Immunoassays. Biosensors, 2021, 11, 510.                                                                                          | 2.3  | 22        |
| 62 | Optimal design of gold nanomatryoshkas with embedded Raman reporters. Journal of Quantitative<br>Spectroscopy and Radiative Transfer, 2017, 190, 89-102.                                                                                                   | 1.1  | 19        |
| 63 | Carbon dot aggregates as an alternative to gold nanoparticles for the laser-induced opening of microchamber arrays. Soft Matter, 2018, 14, 9012-9019.                                                                                                      | 1.2  | 19        |
| 64 | Advantages of Highly Spherical Gold Nanoparticles as Labels for Lateral Flow Immunoassay. Sensors,<br>2020, 20, 3608.                                                                                                                                      | 2.1  | 19        |
| 65 | Photostability of Contrast Agents for Photoacoustics: The Case of Gold Nanorods. Nanomaterials, 2021, 11, 116.                                                                                                                                             | 1.9  | 19        |
| 66 | On the extinction multipole plasmons in gold nanorods. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 306-314.                                                                                                                    | 1.1  | 18        |
| 67 | Large-scale high-quality 2D silica crystals: dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis. Nanotechnology, 2014, 25, 405602.                                                                                  | 1.3  | 18        |
| 68 | Quantitative and multiplex dot-immunoassay using gap-enhanced Raman tags. RSC Advances, 2017, 7,<br>40834-40841.                                                                                                                                           | 1.7  | 18        |
| 69 | Air-Filled Bubbles Stabilized by Gold Nanoparticle/Photodynamic Dye Hybrid Structures for Theranostics. Nanomaterials, 2021, 11, 415.                                                                                                                      | 1.9  | 18        |
| 70 | CaCO <sub>3</sub> Nanoparticles Coated with Alternating Layers of Poly-L-Arginine Hydrochloride<br>and Fe <sub>3</sub> O <sub>4</sub> Nanoparticles as Navigable Drug Carriers and Hyperthermia Agents.<br>ACS Applied Nano Materials, 2022, 5, 2994-3006. | 2.4  | 17        |
| 71 | Optical properties of gold nanoshells on monodisperse silica cores: Experiment and simulations.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 1-9.                                                                            | 1.1  | 16        |
| 72 | Photoacoustic and fluorescent effects in multilayer plasmonâ€dye interfaces. Journal of Biophotonics,<br>2019, 12, e201800265.                                                                                                                             | 1.1  | 16        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Small Thiols Stabilize the Shape of Gold Nanorods. Journal of Physical Chemistry C, 2020, 124, 11132-11140.                                                                                                                 | 1.5 | 16        |
| 74 | Petal-like Gap-Enhanced Raman Tags with Controllable Structures for High-Speed Raman Imaging.<br>Langmuir, 2020, 36, 5546-5553.                                                                                             | 1.6 | 16        |
| 75 | A simple Mie-type model for silica-coated gold nanocages. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 121, 23-29.                                                                                    | 1.1 | 15        |
| 76 | Gold Nanorod Mediated Chlorhexidine Microparticle Formation and Near-Infrared Light Induced Release. Langmuir, 2017, 33, 7982-7993.                                                                                         | 1.6 | 15        |
| 77 | Optically activated and interrogated plasmonic hydrogels for applications in wound healing. Journal of Biophotonics, 2020, 13, e202000135.                                                                                  | 1.1 | 15        |
| 78 | Air-Filled Microbubbles Based on Albumin Functionalized with Gold Nanocages and Zinc<br>Phthalocyanine for Multimodal Imaging. Micromachines, 2021, 12, 1161.                                                               | 1.4 | 15        |
| 79 | Polydopamine coating decreases longitudinal plasmon of Au nanorods: Experiment and simulations.<br>Applied Materials Today, 2019, 15, 67-76.                                                                                | 2.3 | 14        |
| 80 | A method for studying insoluble immune complexes. Biochimica Et Biophysica Acta - General Subjects,<br>2004, 1670, 199-207.                                                                                                 | 1.1 | 13        |
| 81 | Extinction and extra-high depolarized light scattering spectra of gold nanorods with improved purity<br>and dimension tunability: direct and inverse problems. Physical Chemistry Chemical Physics, 2014, 16,<br>5710-5722. | 1.3 | 13        |
| 82 | Au-nanocluster-loaded human serum albumin nanoparticles with enhanced cellular uptake for<br>fluorescent imaging. Journal of Innovative Optical Health Sciences, 2016, 09, 1650004.                                         | 0.5 | 12        |
| 83 | Impact of Kapitza resistance on the stability and efficiency of photoacoustic conversion from gold nanorods. Journal of Colloid and Interface Science, 2020, 578, 358-365.                                                  | 5.0 | 12        |
| 84 | Microstructured Optical Waveguide-Based Endoscopic Probe Coated with Silica Submicron Particles.<br>Materials, 2019, 12, 1424.                                                                                              | 1.3 | 10        |
| 85 | Optical properties of gold spheroidal particles and nanoshells: Effect of the external dielectric medium. , 2005, , .                                                                                                       |     | 7         |
| 86 | Resonant Concentration-Driven Control of Dye Molecule Photodegradation via Strong Optical<br>Coupling to Plasmonic Nanoparticles. Nano Letters, 2022, 22, 105-110.                                                          | 4.5 | 7         |
| 87 | A New Type of SERS Tags: Au@Ag Core/Shell Nanorods with Embedded Aromatic Molecules.<br>Nanotechnologies in Russia, 2017, 12, 495-507.                                                                                      | 0.7 | 6         |
| 88 | Microstructured Waveguides with Polyelectrolyte-Stabilized Gold Nanostars for SERS Sensing of Dissolved Analytes. Materials, 2018, 11, 734.                                                                                 | 1.3 | 6         |
| 89 | Live Cell Poration by Au Nanostars to Probe Intracellular Molecular Composition with SERS.<br>Nanomaterials, 2021, 11, 2588.                                                                                                | 1.9 | 6         |
| 90 | Effect of Surface Modification of Multifunctional Nanocomposite Drug Delivery Carriers with<br>DARPin on Their Biodistribution <i>In Vitro</i> and <i>In Vivo</i> . ACS Applied Bio Materials, 0, , .                       | 2.3 | 6         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Fluctuation of probe beam in thermolens schematics as potential indicator of cell metabolism, apoptosis, necrosis and laser impact. , 2006, , .                                                     |     | 5         |
| 92  | <title>Observation of time-dependent single-particle light scattering from gold nanorods and nanorods and nanospheres by using unpolarized dark-field microscopy</title> . , 2006, , .              |     | 4         |
| 93  | Near-infrared laser photothermal therapy and photodynamic inactivation of cells by using gold nanoparticles and dyes. Proceedings of SPIE, 2007, , .                                                | 0.8 | 4         |
| 94  | Combined near infrared photothermolysis and photodynamic therapy by association of gold nanoparticles and an organic dye. , 2011, , .                                                               |     | 4         |
| 95  | Precise control of distance between plasmonic surfaceâ€enhanced Raman scattering substrate and analyte molecules with polyelectrolyte layers. Journal of Raman Spectroscopy, 2018, 49, 1581-1593.   | 1.2 | 4         |
| 96  | Improving <scp>SERS</scp> bioimaging of subcutaneous phantom in vivo with optical clearing.<br>Journal of Biophotonics, 2022, 15, e202100281.                                                       | 1.1 | 4         |
| 97  | <title>Study of complex micellar systems by static and dynamic light scattering</title> ., 2004, 5475, 12.                                                                                          |     | 3         |
| 98  | <title>Optical polarizability of metal nanoparticles and their biospheric conjugates</title> ., 2006, , .                                                                                           |     | 3         |
| 99  | <title>Optical properties of gold-nanoshell planar array</title> ., 2007, , .                                                                                                                       |     | 3         |
| 100 | The development of skin immersion clearing method for increasing of laser exposure efficiency on subcutaneous objects. , 2012, , .                                                                  |     | 3         |
| 101 | Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites:<br>Erratum. Theranostics, 2013, 3, 1012-1012.                                                     | 4.6 | 3         |
| 102 | Gold Nanoparticle-Based Technologies in Photothermal/Photodynamic Treatment. , 2018, , 151-173.                                                                                                     |     | 3         |
| 103 | Photoswitchable Spasers with a Plasmonic Core and Photoswitchable Fluorescent Proteins.<br>Scientific Reports, 2019, 9, 12439.                                                                      | 1.6 | 3         |
| 104 | <title>Gold nanoparticle sizing based on differential static light scattering spectroscopy, absorption spectroscopy, and dynamic light scattering</title> . , 2004, , .                             |     | 2         |
| 105 | Influence of gold nanoparticles on platelets functional activity in vitro. Proceedings of SPIE, 2008, , .                                                                                           | 0.8 | 2         |
| 106 | Morphological study of the internal organs in rats with alloxan diabetes and transplanted liver<br>tumor after intravenous injection of gold nanorods. Russian Open Medical Journal, 2014, 3, 0301. | 0.1 | 2         |
| 107 | Alterations of morphology of lymphoid organs and peripheral blood indicators under the influence of gold nanoparticles in rats. Journal of Innovative Optical Health Sciences, 2016, 09, 1640004.   | 0.5 | 2         |
| 108 | Cell culture surfaces with immobilized gold nanostars: a new approach for laser-induced plasmonic cell optoporation. , 2017, , .                                                                    |     | 2         |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Tumor Phantom with Incorporated SERS Tags: Detectability in a Turbid Medium. Photonics, 2021, 8, 144.                                                                                       | 0.9 | 2         |
| 110 | Citrate-reduced Au nanoparticles vs. monodisperse spheres: extinction and dynamic light scattering measurements. , 2019, , .                                                                |     | 2         |
| 111 | SERS Platform Based on Hollow-Core Microstructured Optical Fiber: Technology of UV-Mediated Gold<br>Nanoparticle Growth. Biosensors, 2022, 12, 19.                                          | 2.3 | 2         |
| 112 | <title>Structure of insoluble immune complexes as studied by spectroturbidimetry and dynamic light scattering</title> . , 2004, 5475, 26.                                                   |     | 1         |
| 113 | <title>Plasmon resonance of gold nanoshells: sensitivity to the local dielectric environment</title> .<br>, 2006, , .                                                                       |     | 1         |
| 114 | <title>Optimization of gold nanostructers for laser killing of cancer cells</title> ., 2006, , .                                                                                            |     | 1         |
| 115 | <title>Multipole plasmons in gold nanorods: scaling properties and dependence on the particle size, shape, orientation, and dielectric environment</title> . , 2007, , .                    |     | 1         |
| 116 | <title>Gold nanoshells as solid-phase dot assay labels</title> . Proceedings of SPIE, 2007, , .                                                                                             | 0.8 | 1         |
| 117 | The assesment of effectiveness of plasmonic resonance photothermal therapy in tumor-bearing rats after multiple intravenous administration of gold nanorods. Proceedings of SPIE, 2017, , . | 0.8 | 1         |
| 118 | The effects of prolonged oral administration of gold nanoparticles on the morphology of hematopoietic and lymphoid organs. , 2017, , .                                                      |     | 1         |
| 119 | A novel centrifuge-based approach for tunable 2D layering of plasmonic nanoparticles. , 2019, , .                                                                                           |     | 1         |
| 120 | SERS response from gold nanorods and dumbbells. , 2020, , .                                                                                                                                 |     | 1         |
| 121 | SERS and Indicator Paper Sensing of Hydrogen Peroxide Using Au@Ag Nanorods. Sensors, 2022, 22, 3202.                                                                                        | 2.1 | 1         |
| 122 | <title>Liposomes by quasielastic light scattering and spectroturbidimetry</title> ., 2002, 4707, 261.                                                                                       |     | 0         |
| 123 | Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245. , 2003, , .                                      |     | 0         |
| 124 | <title>Handling of nanoparticles with light pressure forces</title> . , 2007, 6536, 79.                                                                                                     |     | 0         |
| 125 | Three-dimensional dynamics of temperature fields in phantoms and biotissue under IR laser photothermal therapy using gold nanoparticles and ICG dye. , 2010, , .                            |     | 0         |
| 126 | Optical microscopy for nanoparticles temperature and velocity field visualization. , 2010, , .                                                                                              |     | 0         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The reversibility of morphological changes in the mesenteric lymph nodes after peroral administration of gold nanoparticles. Proceedings of SPIE, 2014, , .                                         | 0.8 | 0         |
| 128 | Evaluation of lipid peroxidation activity at intravenous administration of gold nanorods in rats with simulated diabetes and transplanted liver cancer. , 2014, , .                                 |     | 0         |
| 129 | Freeze-dried polymer-coated quantum dots for perspective biomedical application. , 2015, , .                                                                                                        |     | 0         |
| 130 | The study of indicators of bone marrow and peripheral blood of rats with diabetes and transplanted liver tumor after intravenous injection of gold nanorods. , 2015, , .                            |     | 0         |
| 131 | Surface-enhanced Raman scattering from 4-aminothiophenol molecules embedded inside Ag coated gold nanorods. , 2016, , .                                                                             |     | 0         |
| 132 | Optical properties of monodisperse gold nanoshells on silica cores. , 2016, , .                                                                                                                     |     | 0         |
| 133 | The morphological changes in transplanted tumors in rats at plasmonic photothermal therapy.<br>Proceedings of SPIE, 2016, , .                                                                       | 0.8 | 0         |
| 134 | The morphological changes in the internal organs of laboratory animals after prolonged oral administration of gold nanoparticles. Journal of Innovative Optical Health Sciences, 2016, 09, 1642004. | 0.5 | 0         |
| 135 | Bovine serum albumin nanoparticles loaded with Photosens photosensitizer for effective photodynamic therapy. Proceedings of SPIE, 2017, , .                                                         | 0.8 | 0         |
| 136 | The inflammation markers in serum of tumor-bearing rats after plasmonic photothermal therapy. ,<br>2018, , .                                                                                        |     | 0         |
| 137 | Layer-by-layer polyelectrolyte coating for surface-enhanced Raman scattering on gold nanostars inside hollow core photonic crystal fibers. , 2018, , .                                              |     | 0         |
| 138 | Cytotoxicity evaluation of gold nanoparticles on microalga Dunaliella salina in microplate test system. , 2018, , .                                                                                 |     | 0         |
| 139 | Optical properties of polydopamine-coated Au nanorods. , 2019, , .                                                                                                                                  |     | 0         |
| 140 | Synthesis and SERS properties of Au@Au and Au@Ag nanomatryoshkas with embedded reporters. , 2019, , .                                                                                               |     | 0         |
| 141 | SERS response from gap-enhanced Raman tags as a function of the shell thickness. , 2020, , .                                                                                                        |     | 0         |
| 142 | New materials for laser welding of connective tissue and controlled release of antimicrobial principles. , 2020, , .                                                                                |     | 0         |
| 143 | Au@NBT@Ag tags with different thickness of the metallic shell: synthesis and SERS properties. , 2020, ,                                                                                             |     | 0         |
| 144 | Plasmonic nanoparticles as contrast agents for photoacoustics: strategies to improve their photostability. , 2021, , .                                                                              |     | 0         |

9