
Ei Terasawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9094039/publications.pdf Version: 2024-02-01

FITEDASANAA

#	Article	IF	CITATIONS
1	The mechanism underlying the pubertal increase in pulsatile <scp>GnRH</scp> release in primates. Journal of Neuroendocrinology, 2022, 34, e13119.	1.2	10
2	Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology, 2021, 162, .	1.4	10
3	Neuroendocrine mechanisms of puberty in non–human primates. Current Opinion in Endocrine and Metabolic Research, 2020, 14, 145-151.	0.6	9
4	Epigenetic Regulation of the GnRH and Kiss1 Genes: Developmental Perspectives. Masterclass in Neuroendocrinology, 2020, , 237-264.	0.1	0
5	Hypothalamic Reproductive Endocrine Pulse Generator Activity Independent of Neurokinin B and Dynorphin Signaling. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4304-4318.	1.8	26
6	Mechanism of pulsatile GnRH release in primates: Unresolved questions. Molecular and Cellular Endocrinology, 2019, 498, 110578.	1.6	19
7	Role of Kisspeptin and NKB in Puberty in Nonhuman Primates: Sex Differences. Seminars in Reproductive Medicine, 2019, 37, 047-055.	0.5	12
8	SAT-411 Prepubertal Tonic Gamma-Amino Butyric Acid (GABA) Inhibition Is Upstream of Neurokinin B (NKB), Kisspeptin, and Gonadotropin Releasing Hormone (GnRH) Neuronal Network in Male Rhesus Monkeys. Journal of the Endocrine Society, 2019, 3, .	0.1	2
9	Neuroestradiol in regulation of GnRH release. Hormones and Behavior, 2018, 104, 138-145.	1.0	22
10	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	1.2	12
11	Accelerated Episodic Luteinizing Hormone Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca Mulatta) Exposed to Testosterone during Early-to-Mid Gestation. Neuroendocrinology, 2018, 107, 133-146.	1.2	14
12	Role of Kisspeptin and Neurokinin B Signaling in Male Rhesus Monkey Puberty. Endocrinology, 2018, 159, 3048-3060.	1.4	21
13	Role of Kisspeptin and Neurokinin B in Puberty in Female Non-Human Primates. Frontiers in Endocrinology, 2018, 9, 148.	1.5	20
14	Kisspeptin and Neurokinin B Signaling Network Underlies the Pubertal Increase in GnRH Release in Female Rhesus Monkeys. Endocrinology, 2017, 158, 3269-3280.	1.4	33
15	Obligatory role of hypothalamic neuroestradiol during the estrogen-induced LH surge in female ovariectomized rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13804-13809.	3.3	27
16	Neuroendocrine Regulation of Puberty. , 2017, , 309-356.		0
17	A novel approach for assigning levels to monkey and human lumbosacral spinal cord based on ventral horn morphology. PLoS ONE, 2017, 12, e0177243.	1.1	11
18	The Methylcytosine Dioxygenase Ten-Eleven Translocase-2 (tet2) Enables Elevated GnRH Gene Expression and Maintenance of Male Reproductive Function. Endocrinology, 2016, 157, 3588-3603.	1.4	42

#	Article	IF	CITATIONS
19	Neuroestradiol in the Stalk Median Eminence of Female Rhesus Macaques Decreases in Association With Puberty Onset. Endocrinology, 2016, 157, 70-76.	1.4	25
20	Puberty in Non-human Primates and Man. , 2015, , 1487-1536.		22
21	Acute Influences of Bisphenol A Exposure on Hypothalamic Release of Gonadotropin-Releasing Hormone and Kisspeptin in Female Rhesus Monkeys. Endocrinology, 2015, 156, 2563-2570.	1.4	42
22	Prolonged Infusion of Estradiol Benzoate Into the Stalk Median Eminence Stimulates Release of GnRH and Kisspeptin in Ovariectomized Female Rhesus Macaques. Endocrinology, 2015, 156, 1804-1814.	1.4	12
23	Neuroestradiol in the Hypothalamus Contributes to the Regulation of Gonadotropin Releasing Hormone Release. Journal of Neuroscience, 2013, 33, 19051-19059.	1.7	81
24	Kisspeptin and Puberty in Mammals. Advances in Experimental Medicine and Biology, 2013, 784, 253-273.	0.8	84
25	Epigenetic Control of Gonadotropin Releasing Hormone Neurons. Frontiers in Endocrinology, 2013, 4, 61.	1.5	33
26	Developmental Changes in GnRH Release in Response to Kisspeptin Agonist and Antagonist in Female Rhesus Monkeys (Macaca mulatta): Implication for the Mechanism of Puberty. Endocrinology, 2012, 153, 825-836.	1.4	94
27	Body Weight Impact on Puberty: Effects of High-Calorie Diet on Puberty Onset in Female Rhesus Monkeys. Endocrinology, 2012, 153, 1696-1705.	1.4	52
28	Neuroestrogen, rapid action of estradiol, and GnRH neurons. Frontiers in Neuroendocrinology, 2012, 33, 364-375.	2.5	49
29	Tonic Control of Kisspeptin Release in Prepubertal Monkeys: Implications to the Mechanism of Puberty Onset. Endocrinology, 2012, 153, 3331-3336.	1.4	46
30	Neuroendocrine Mechanism of Puberty. , 2012, , 433-484.		7
31	Developmental Increase in Kisspeptin-54 Release in Vivo Is Independent of the Pubertal Increase in Estradiol in Female Rhesus Monkeys (Macaca mulatta). Endocrinology, 2012, 153, 1887-1897.	1.4	42
32	Colocalization of FM1-43, Bassoon, and GnRH-1: GnRH-1 Release from Cell Bodies and Their Neuroprocesses. Endocrinology, 2011, 152, 4310-4321.	1.4	21
33	Recent Discoveries on the Control of Gonadotrophinâ€Releasing Hormone Neurones in Nonhuman Primates. Journal of Neuroendocrinology, 2010, 22, 630-638.	1.2	50
34	Epigenetic Changes Coincide with in Vitro Primate GnRH Neuronal Maturation. Endocrinology, 2010, 151, 5359-5368.	1.4	58
35	Discovery of Potent Kisspeptin Antagonists Delineate Physiological Mechanisms of Gonadotropin Regulation. Journal of Neuroscience, 2009, 29, 3920-3929.	1.7	322
36	Involvement of G Protein-Coupled Receptor 30 (GPR30) in Rapid Action of Estrogen in Primate LHRH Neurons. Molecular Endocrinology, 2009, 23, 349-359.	3.7	137

#	Article	IF	CITATIONS
37	Rapid Action of Oestrogen in Luteinising Hormoneâ€Releasing Hormone Neurones: The Role of GPR30. Journal of Neuroendocrinology, 2009, 21, 316-321.	1.2	50
38	Postmenopausal increase in KiSS-1, GPR54, and luteinizing hormone releasing hormone (LHRH-1) mRNA in the basal hypothalamus of female rhesus monkeys. Peptides, 2009, 30, 103-110.	1.2	57
39	Neuroendocrine Regulation of Puberty. , 2009, , 2035-2113.		2
40	Microdialysis methods for in vivo neuropeptide measurement in the Stalk-median eminence in the Rhesus monkey. Journal of Neuroscience Methods, 2008, 168, 26-34.	1.3	24
41	Comparative effects of sodium pyrithione evoked intracellular calcium elevation in rodent and primate ventral horn motor neurons. Biochemical and Biophysical Research Communications, 2008, 366, 48-53.	1.0	8
42	Rapid Action of Estrogens on Intracellular Calcium Oscillations in Primate Luteinizing Hormone-Releasing Hormone-1 Neurons. Endocrinology, 2008, 149, 1155-1162.	1.4	70
43	An Increase in Kisspeptin-54 Release Occurs with the Pubertal Increase in Luteinizing Hormone-Releasing Hormone-1 Release in the Stalk-Median Eminence of Female Rhesus Monkeys in Vivo. Endocrinology, 2008, 149, 4151-4157.	1.4	240
44	An increase in in vivo release of LHRH and precocious puberty by posterior hypothalamic lesions in female rhesus monkeys (Macaca mulatta). American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1000-E1009.	1.8	7
45	Maternal chronic vitamin A toxicity amplifies early fetal liver retinyl ester storage in captive Old World monkeys. FASEB Journal, 2007, 21, A49.	0.2	0
46	Ingestion of excessive preformed vitamin A by mothers amplifies storage of retinyl esters in early fetal livers of captive Old World monkeys. Comparative Medicine, 2007, 57, 505-11.	0.4	10
47	Postnatal Remodeling of Gonadotropin-Releasing Hormone I Neurons: Toward Understanding the Mechanism of the Onset of Puberty. Endocrinology, 2006, 147, 3650-3651.	1.4	14
48	Human neurons express type I GnRH receptor and respond to GnRH I by increasing luteinizing hormone expression. Journal of Endocrinology, 2006, 191, 651-663.	1.2	64
49	Role of GABA in the Mechanism of the Onset of Puberty in Nonâ€Human Primates. International Review of Neurobiology, 2005, 71, 113-129.	0.9	30
50	Possible Role of 5′-Adenosine Triphosphate in Synchronization of Ca2+ Oscillations in Primate Luteinizing Hormone-Releasing Hormone Neurons. Molecular Endocrinology, 2005, 19, 2736-2747.	3.7	41
51	Firing Pattern and Rapid Modulation of Activity by Estrogen in Primate Luteinizing Hormone Releasing Hormone-1 Neurons. Endocrinology, 2005, 146, 4312-4320.	1.4	68
52	Menopausal Increases in Pulsatile Gonadotropin-Releasing Hormone Release in a Nonhuman Primate (Macaca mulatta). Endocrinology, 2004, 145, 4653-4659.	1.4	72
53	Aging-Related Changes inin VivoRelease of Growth Hormone-Releasing Hormone and Somatostatin from the Stalk-Median Eminence in Female Rhesus Monkeys (Macaca mulatta). Journal of Clinical Endocrinology and Metabolism, 2003, 88, 827-833.	1.8	39
54	Gonadotropin-Releasing Hormone II: Is this Neuropeptide Important for Mammalian Reproduction?. Endocrinology, 2003, 144, 3-4.	1.4	14

#	Article	IF	CITATIONS
55	A role for non-neuronal cells in synchronization of intracellular calcium oscillations in primate LHRH neurons. Progress in Brain Research, 2002, 141, 283-291.	0.9	10
56	Aging-Related Changes in Release of Growth Hormone and Luteinizing Hormone in Female Rhesus Monkeys. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5160-5167.	1.8	48
57	Neuroendocrine Regulation of Puberty. , 2002, , 589-659.		41
58	Estrogen receptor-alpha immunoreactive neurons in the ventrolateral periaqueductal gray receive monosynaptic input from the lumbosacral cord in the rhesus monkey. Journal of Comparative Neurology, 2002, 443, 27-42.	0.9	26
59	Axonal sprouting of a brainstem-spinal pathway after estrogen administration in the adult female rhesus monkey. Journal of Comparative Neurology, 2002, 454, 82-103.	0.9	12
60	Neural mechanisms underlying the pubertal increase in LHRH release in the rhesus monkey. Trends in Endocrinology and Metabolism, 2001, 12, 353-359.	3.1	23
61	Presence of luteinizing hormone-releasing hormone fragments in the rhesus monkey forebrain. Journal of Comparative Neurology, 2001, 439, 491-504.	0.9	39
62	Luteinizing hormone-releasing hormone (LHRH) neurons: Mechanism of pulsatile LHRH release. Vitamins and Hormones, 2001, 63, 91-129.	0.7	79
63	Neurobiological Mechanisms of the Onset of Puberty in Primates*. Endocrine Reviews, 2001, 22, 111-151.	8.9	424
64	Monosynaptic projections from the nucleus retroambiguus to motoneurons supplying the abdominal wall, axial, hindlimb, and pelvic floor muscles in the female rhesus monkey. Journal of Comparative Neurology, 2000, 424, 233-250.	0.9	65
65	Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: Implications for vocalization and reproductive behavior. Journal of Comparative Neurology, 2000, 424, 251-268.	0.9	78
66	N-Methyld,l-Aspartate Induces the Release of Luteinizing Hormone-Releasing Hormone in the Prepubertal and Pubertal Female Rhesus Monkey as Measured byin VivoPush-Pull Perfusion in the Stalk-Median Eminence1. Endocrinology, 2000, 141, 219-228.	1.4	77
67	Intracellular Ca ²⁺ Oscillations in Luteinizing Hormone-Releasing Hormone Neurons Derived from the Embryonic Olfactory Placode of the Rhesus Monkey. Journal of Neuroscience, 1999, 19, 5898-5909.	1.7	112
68	Effects of Pulsatile Infusion of the GABAA Receptor Blocker Bicuculline on the Onset of Puberty in Female Rhesus Monkeys1. Endocrinology, 1999, 140, 5257-5266.	1.4	108
69	A Role of Î ³ -Amino Butyric Acid (GABA) and Glutamate in Control of Puberty in Female Rhesus Monkeys: Effect of an Antisense Oligodeoxynucleotide for GAD67 Messenger Ribonucleic Acid and MK801 on Luteinizing Hormone-Releasing Hormone Release*. Endocrinology, 1999, 140, 705-712.	1.4	55
70	Pulsatile Release of Luteinizing Hormone-Releasing Hormone (LHRH) in Cultured LHRH Neurons Derived from the Embryonic Olfactory Placode of the Rhesus Monkey*. Endocrinology, 1999, 140, 1432-1441.	1.4	156
71	An Increase in Glutamate Release Follows a Decrease in Gamma Aminobutyric Acid and the Pubertal Increase in Luteinizing Hormone Releasing Hormone Release in Female Rhesus Monkeys. Journal of Neuroendocrinology, 1999, 11, 275-282.	1.2	77
72	Hypothalamic mechanism of the onset of puberty. Current Opinion in Endocrinology, Diabetes and Obesity, 1999, 6, 44.	0.6	30

#	Article	IF	CITATIONS
73	Cellular Mechanism of Pulsatile LHRH Release1. General and Comparative Endocrinology, 1998, 112, 283-295.	0.8	42
74	A Second Form of Gonadotropin-Releasing Hormone (GnRH) with Characteristics of Chicken GnRH-II Is Present in the Primate Brain1. Endocrinology, 1997, 138, 5618-5629.	1.4	145
75	Two populations of luteinizing hormone-releasing hormone neurons in the forebrain of the rhesus macaque during embryonic development. Journal of Comparative Neurology, 1997, 380, 293-309.	0.9	117
76	Two populations of luteinizing hormoneâ€releasing hormone neurons in the forebrain of the rhesus macaque during embryonic development. Journal of Comparative Neurology, 1997, 380, 293-309.	0.9	2
77	Effects of Adrenal Medulla Transplantation into the Third Ventricle on the Onset of Puberty in Female Rhesus Monkeys. Experimental Neurology, 1996, 140, 172-183.	2.0	11
78	Control of luteinizing hormone-releasing hormone pulse generation in nonhuman primates. Cellular and Molecular Neurobiology, 1995, 15, 141-164.	1.7	104
79	Steroid Modulation of Pulsatile LHRH Release in the Rhesus Monkey. Hormones and Behavior, 1994, 28, 406-416.	1.0	9
80	In Vivo Measurement of Pulsatile Release of Neuropeptides and Neurotransmitters in Rhesus Monkeys Using Push–Pull Perfusion. Methods in Neurosciences, 1994, , 184-202.	0.5	13
81	Ovariectomy Increases in vivo Luteinizing Hormone-Releasing Hormone Release in Pubertal, but not Prepubertal, Female Rhesus Monkeys. Journal of Neuroendocrinology, 1993, 5, 41-50.	1.2	67
82	A Possible Role of Neuropeptide Y in the Control of the Onset of Puberty in Female Rhesus Monkeys. Neuroendocrinology, 1993, 58, 23-34.	1.2	58
83	Estradiol Enhances the Action of Neuropeptide Y on in vivo Luteinizing Hormone-Releasing Hormone Release in the Ovariectomized Rhesus Monkey. Neuroendocrinology, 1992, 56, 921-925.	1.2	41
84	A study of the hypothalamic pulse-generating mechanism responsible for LH release: electrical stimulation of the medial basal hypothalamus in the ovariectomized guinea pig. Brain Research, 1991, 560, 268-275.	1.1	8
85	Prostaglandin E2 mediates the stimulatory effect of methoxamine on in vivo luteinizing hormone-releasing hormone (LH-RH) release in the ovariectomized female rhesus monkey. Brain Research, 1991, 560, 276-281.	1.1	17
86	The Alpha-1-Adrenergic Neuronal System Is Involved in the Pulsatile Release of Luteinizing Hormone-Releasing Hormone in the Ovariectomized Female Rhesus Monkey. Neuroendocrinology, 1991, 53, 373-381.	1.2	62
87	Suppression of luteinizing hormone release by the α1-adrenergic receptor antagonist prazosin in the ovariectomized female rhesus monkey. American Journal of Primatology, 1991, 25, 23-33.	0.8	12
88	Increase in Luteinizing Hormone Content Occurs in Cultured Human Fetal Pituitary Cells Exposed to Gonadotropin-Releasing Hormone*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 606-614.	1.8	5
89	Reproducible stimulation of ciliary muscle contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode. Brain Research, 1989, 503, 265-272.	1.1	70
90	Developmental Changes in the Positive Feedback Effect of Estrogen on Luteinizing Hormone Release in Ovariectomized Female Rhesus Monkeys*. Endocrinology, 1985, 117, 2490-2497.	1.4	36

#	Article	IF	CITATIONS
91	Factors Influencing the Progesterone-Induced Luteinizing Hormone Surge in Rhesus Monkeys: Diurnal Influence and Time Interval After Estrogen 2. Biology of Reproduction, 1984, 31, 732-741.	1.2	22
92	An Increase in Single Unit Activity of the Medial Basal Hypothalamus Occurs during the Progesterone-Induced Luteinizing Hormone Surge in the Female Rhesus Monkey*. Endocrinology, 1984, 115, 2445-2452.	1.4	24
93	The LHRH neuronal system in female rats: Relation to the medial preoptic nucleus Endocrinologia Japonica, 1983, 30, 405-417.	0.5	31
94	HYPOTHALAMIC CONTROL OF PUBERTY IN THE FEMALE RHESUS MACAQUE. , 1983, , 149-182.		32
95	Discrete Lesions Reveal Functional Heterogeneity of Suprachiasmatic Structures in Regulation of Gonadotropin Secretion in the Female Rat. Neuroendocrinology, 1982, 34, 395-404.	1.2	337
96	Testosterone potentiation of the effectiveness of ACTH1–24 on the induction of the stretch-yawning syndrome (SYS) in male guinea pigs. Hormones and Behavior, 1981, 15, 77-85.	1.0	15
97	Effects of Discrete Lesions of Preoptic and Suprachiasmatic Structures in the Female Rat. Neuroendocrinology, 1980, 31, 147-157.	1.2	215
98	Positive Feedback Effect of Progesterone on Luteinizing Hormone (LH) Release in Cyclic Female Rhesus Monkeys: LH Response Occurs in Two Phases*. Journal of Clinical Endocrinology and Metabolism, 1980, 51, 1245-1250.	1.8	38
99	Lesions of the preoptic area facilitate lordosis behavior in male and female guinea pigs. Brain Research Bulletin, 1979, 4, 513-517.	1.4	53
100	Pentobarbital inhibition of progesterone-induced behavioral estrus in ovariectomized guinea pigs. Brain Research, 1976, 107, 375-383.	1.1	14
101	Effects of Hippocampal Ablation on Stress-Induced Gonadotropin Secretion: An Observation of the Sexual Difference. Endocrinologia Japonica, 1974, 21, 289-296.	0.5	2
102	Positive Feedback Sites of Estrogen in the Brain on Ovulation. Endocrinologia Japonica, 1974, 21, 51-60.	0.5	33
103	Effects of Limbic Forebrain Ablation on Pituitary Gonadal Function in the Female Rat. Endocrinologia Japonica, 1973, 20, 277-289.	0.5	16
104	Further Studies on Sexual Differentiation of the Brain: Response to Electrical Stimulation in Gonadectomized and Estrogen Primed Rats. Endocrinologia Japonica, 1973, 20, 595-607.	0.5	6
105	Changes in Multiunit Electrical Activity (MUA) in Rat Brain During the Estrous Cycle and After Administration of Sex Steroids. Progress in Brain Research, 1973, 39, 125-134.	0.9	8
106	Electrical Stimulation of the Brain on Gonadotropin Secretion in the Female Prepuberal Rat. Endocrinologia Japonica, 1972, 19, 335-347.	0.5	13
107	A Possible Role of the Hippocampus and the Amygdala in the Androgenized Rat. Endocrinologia Japonica, 1972, 19, 349-358.	0.5	21
108	Acute Effect of Neural Deafferentation on Timing of Gonadotropin Secretion Before Proestrus in the Female Rat. Endocrinologia Japonica, 1972, 19, 449-459.	0.5	17

#	Article	IF	CITATIONS
109	Effect of Electrical Stimulation of the Brain on Ovulation during Estrous Cycle in the Rats. Endocrinologia Japonica, 1970, 17, 7-13.	0.5	9
110	Diurnal variation in the effects of progesterone on multiple unit activity in the rat hypothalamus. Experimental Neurology, 1970, 27, 359-374.	2.0	24
111	Mechanisms in the Limbic System Controlling Reproductive Functions of the Ovary with Special Reference to the Positive Feedback of Progestin to the Hippocampus. Progress in Brain Research, 1967, 27, 69-102.	0.9	24
112	Pulsatile Release of Luteinizing Hormone-Releasing Hormone (LHRH) in Cultured LHRH Neurons Derived from the Embryonic Olfactory Placode of the Rhesus Monkey. , 0, .		42