

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9093883/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	27.8	346
2	Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial. PLoS Medicine, 2016, 13, e1002139.	8.4	117
3	Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evolution, 2016, 2, vew016.	4.9	105
4	Murine Norovirus: Propagation, Quantification, and Genetic Manipulation. Current Protocols in Microbiology, 2014, 33, 15K.2.1-61.	6.5	75
5	Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus. MBio, 2019, 10, .	4.1	58
6	Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine–Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2. MBio, 2017, 8, .	4.1	56
7	Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation. ELife, 2019, 8, .	6.0	48
8	Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation. PLoS Pathogens, 2020, 16, e1008250.	4.7	41
9	Selection and Characterization of Rupintrivir-Resistant Norwalk Virus Replicon Cells <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	18
10	Polyprotein processing and intermolecular interactions within the viral replication complex spatially and temporally control norovirus protease activity. Journal of Biological Chemistry, 2019, 294, 4259-4271.	3.4	18
11	Porcine sapovirus replication is restricted by the type I interferon response in cell culture. Journal of General Virology, 2015, 96, 74-84.	2.9	17
12	Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial. Wellcome Open Research, 2017, 2, 28.	1.8	14
13	miR-155 induction is a marker of murine norovirus infection but does not contribute to control of replication in vivo. Wellcome Open Research, 2018, 3, 42.	1.8	7
14	Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial. Wellcome Open Research, 0, 2, 28.	1.8	6
15	Murine Norovirus Infection Results in Anti-inflammatory Response Downstream of Amino Acid Depletion in Macrophages. Journal of Virology, 2021, 95, e0113421.	3.4	4
16	Targeting macrophage- and intestinal epithelial cell-specific microRNAs against norovirus restricts replication in vivo. Journal of General Virology, 2018, 99, 1621-1632.	2.9	4
17	Replicative fitness recuperation of a recombinant murine norovirus – in vitro reciprocity of genetic shift and drift. Journal of General Virology, 2020, 101, 510-522.	2.9	4