
Denis Richard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9093772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genetics, 2000, 26, 435-439.	9.4	992
2	Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. Journal of Clinical Investigation, 2012, 122, 545-552.	3.9	815
3	Outdoor Temperature, Age, Sex, Body Mass Index, and Diabetic Status Determine the Prevalence, Mass, and Glucose-Uptake Activity of 18F-FDG-Detected BAT in Humans. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 192-199.	1.8	473
4	A Central Thermogenic-like Mechanism in Feeding Regulation: An Interplay between Arcuate Nucleus T3 and UCP2. Cell Metabolism, 2007, 5, 21-33.	7.2	264
5	Increased Brown Adipose Tissue Oxidative Capacity in Cold-Acclimated Humans. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E438-E446.	1.8	251
6	The Roles of mTOR Complexes in Lipid Metabolism. Annual Review of Nutrition, 2015, 35, 321-348.	4.3	245
7	Brown Adipose Tissue Energy Metabolism in Humans. Frontiers in Endocrinology, 2018, 9, 447.	1.5	223
8	Contributions of white and brown adipose tissues and skeletal muscles to acute coldâ€induced metabolic responses in healthy men. Journal of Physiology, 2015, 593, 701-714.	1.3	195
9	Brown fat biology and thermogenesis. Frontiers in Bioscience - Landmark, 2011, 16, 1233.	3.0	190
10	The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. European Journal of Pharmacology, 2002, 440, 189-197.	1.7	185
11	Human Brown Adipocyte Thermogenesis Is Driven by β2-AR Stimulation. Cell Metabolism, 2020, 32, 287-300.e7.	7.2	185
12	<i>In vivo</i> measurement of energy substrate contribution to coldâ€induced brown adipose tissue thermogenesis. FASEB Journal, 2015, 29, 2046-2058.	0.2	183
13	Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects With Type 2 Diabetes. Diabetes, 2015, 64, 2388-2397.	0.3	178
14	Inhibition of Intracellular Triglyceride Lipolysis Suppresses Cold-Induced Brown Adipose Tissue Metabolism and Increases Shivering in Humans. Cell Metabolism, 2017, 25, 438-447.	7.2	157
15	The brown adipocyte: update on its metabolic role. International Journal of Biochemistry and Cell Biology, 2004, 36, 2098-2104.	1.2	140
16	Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nature Communications, 2017, 8, 14146.	5.8	119
17	Peroxisome Proliferator-Activated Receptor γ Agonism Increases the Capacity for Sympathetically Mediated Thermogenesis in Lean andob/obMice. Endocrinology, 2004, 145, 3925-3934.	1.4	115
18	Distribution of the uncoupling protein 2 mRNA in the mouse brain. Journal of Comparative Neurology, 1998, 397, 549-560.	0.9	106

DENIS RICHARD

#	Article	IF	CITATIONS
19	Fourâ€week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. Journal of Physiology, 2017, 595, 2099-2113.	1.3	95
20	Metabolic activity of brown, "beige,―and white adipose tissues in response to chronic adrenergic stimulation in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E260-E268.	1.8	92
21	Cognitive and autonomic determinants of energy homeostasis in obesity. Nature Reviews Endocrinology, 2015, 11, 489-501.	4.3	86
22	Understanding the brown adipocyte as a contributor to energy homeostasis. Trends in Endocrinology and Metabolism, 2013, 24, 408-420.	3.1	85
23	Hypothalamic control of brown adipose tissue thermogenesis. Frontiers in Systems Neuroscience, 2015, 9, 150.	1.2	80
24	Role of leptin resistance in the development of obesity in older patients. Clinical Interventions in Aging, 2013, 8, 829.	1.3	77
25	Effects of Rimonabant (SR141716) on Fasting-Induced Hypothalamic-Pituitary-Adrenal Axis and Neuronal Activation in Lean and Obese Zucker Rats. Diabetes, 2006, 55, 3403-3410.	0.3	65
26	mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Scientific Reports, 2016, 6, 37223.	1.6	64
27	DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiological Reviews, 2018, 98, 1765-1803.	13.1	64
28	Intestinal Lipid Handling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 644-653.	1.1	62
29	Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. International Journal of Cardiology, 2013, 167, 2264-2270.	0.8	58
30	Neuronal systems and circuits involved in the control of food intake and adaptive thermogenesis. Annals of the New York Academy of Sciences, 2017, 1391, 35-53.	1.8	53
31	Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R469-R475.	0.9	51
32	Leptin and Corticosterone Have Opposite Effects on Food Intake and the Expression of UCP1 mRNA in Brown Adipose Tissue oflepob/lepobMice. Endocrinology, 1998, 139, 4000-4003.	1.4	49
33	Biliopancreatic diversion with duodenal switch improves insulin sensitivity and secretion through caloric restriction. Obesity, 2014, 22, 1838-1846.	1.5	48
34	Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Scientific Reports, 2017, 7, 15566.	1.6	48
35	Validation of Reference Genes for the Relative Quantification of Gene Expression in Human Epicardial Adipose Tissue. PLoS ONE, 2012, 7, e32265.	1.1	47
36	The brain endocannabinoid system in the regulation of energy balance. Best Practice and Research in Clinical Endocrinology and Metabolism, 2009, 23, 17-32.	2.2	45

DENIS RICHARD

#	Article	IF	CITATIONS
37	Control and Physiological Determinants of Sympathetically Mediated Brown Adipose Tissue Thermogenesis. Frontiers in Endocrinology, 2012, 3, 36.	1.5	41
38	Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. Journal of Applied Physiology, 2018, 124, 482-496.	1.2	36
39	Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues. PLoS ONE, 2016, 11, e0162995.	1.1	36
40	Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1098-R1110.	0.9	34
41	Loss of UCP2 impairs cold-induced non-shivering thermogenesis by promoting a shift toward glucose utilization in brown adipose tissue. Biochimie, 2017, 134, 118-126.	1.3	34
42	Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Molecular Metabolism, 2016, 5, 102-112.	3.0	33
43	Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties. Chemico-Biological Interactions, 2016, 258, 115-125.	1.7	32
44	Loss of hepatic DEPTOR alters the metabolic transition to fasting. Molecular Metabolism, 2017, 6, 447-458.	3.0	32
45	Metabolic Changes Induced by the Biliopancreatic Diversion in Diet-Induced Obesity in Male Rats: The Contributions of Sleeve Gastrectomy and Duodenal Switch. Endocrinology, 2015, 156, 1316-1329.	1.4	31
46	UCP1 expression–associated gene signatures of human epicardial adipose tissue. JCI Insight, 2019, 4, .	2.3	26
47	The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R158-R166.	0.9	25
48	Loss of OcaB Prevents Age-Induced Fat Accretion and Insulin Resistance by Altering B-Lymphocyte Transition and Promoting Energy Expenditure. Diabetes, 2018, 67, 1285-1296.	0.3	25
49	Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. ELife, 2016, 5, .	2.8	25
50	Energy balance and facultative diet-induced thermogenesis in mice fed a high-fat diet. Canadian Journal of Physiology and Pharmacology, 1988, 66, 1297-1302.	0.7	24
51	Altered intestinal functions and increased local inflammation in insulin-resistant obese subjects: a gene-expression profile analysis. BMC Gastroenterology, 2015, 15, 119.	0.8	24
52	The PVH as a Site of CB1-Mediated Stimulation of Thermogenesis by MC4R Agonism in Male Rats. Endocrinology, 2014, 155, 3448-3458.	1.4	21
53	A critical appraisal of brown adipose tissue metabolism in humans. Clinical Lipidology, 2015, 10, 259-280.	0.4	20
54	Malabsorption plays a major role in the effects of the biliopancreatic diversion with duodenal switch on energy metabolism in rats. Surgery for Obesity and Related Diseases, 2015, 11, 356-366.	1.0	20

DENIS RICHARD

#	Article	IF	CITATIONS
55	Emerging Signaling Pathway in Arcuate Feeding-Related Neurons: Role of the Acbd7. Frontiers in Neuroscience, 2017, 11, 328.	1.4	18
56	IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery. Cell Reports Medicine, 2021, 2, 100248.	3.3	18
57	Induction of Ucp2 expression in brain phagocytes and neurons following murine toxoplasmosis: An essential role of IFN-Î ³ and an association with negative energy balance. Journal of Neuroimmunology, 2007, 186, 121-132.	1.1	17
58	Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E815-E824.	1.8	17
59	Kainic acid upregulates uncoupling protein-2 mRNA expression in the mouse brain. NeuroReport, 2003, 14, 2015-2017.	0.6	16
60	Association between nesfatin-1 levels and metabolic improvements in severely obese patients who underwent biliopancreatic derivation with duodenal switch. Peptides, 2016, 86, 6-12.	1.2	16
61	DEP domainâ€containing mTORâ€interacting protein in the rat brain: Distribution of expression and potential implication. Journal of Comparative Neurology, 2015, 523, 93-107.	0.9	15
62	Alterations of Gut Microbiota After Biliopancreatic Diversion with Duodenal Switch in Wistar Rats. Obesity Surgery, 2019, 29, 2831-2842.	1.1	14
63	DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1322-R1331.	0.9	13
64	Anatomical distribution of primary amine oxidase activity in four adipose depots and plasma of severely obese women with or without a dysmetabolic profile. Journal of Physiology and Biochemistry, 2016, 73, 475-486.	1.3	12
65	Effects of Bariatric Surgery on Energy Homeostasis. Canadian Journal of Diabetes, 2017, 41, 426-431.	0.4	11
66	Salmon peptides limit obesityâ€associated metabolic disorders by modulating a gutâ€liver axis in vitamin Dâ€deficient mice. Obesity, 2021, 29, 1635-1649.	1.5	8
67	Consistent gut bacterial and short-chain fatty acid signatures in hypoabsorptive bariatric surgeries correlate with metabolic benefits in rats. International Journal of Obesity, 2022, 46, 297-306.	1.6	7
68	Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity. JCI Insight, 2021, 6, .	2.3	5
69	Cholecalciferol Supplementation Does Not Prevent the Development of Metabolic Syndrome or Enhance the Beneficial Effects of Omega-3 Fatty Acids in Obese Mice. Journal of Nutrition, 2021, 151, 1175-1189.	1.3	5
70	Association between changes in bioactive osteocalcin and glucose homeostasis after biliopancreatic diversion. Endocrine, 2020, 69, 526-535.	1.1	4