Marjolein Meijerink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9093712/publications.pdf

Version: 2024-02-01

26 papers 2,367 citations

331259 21 h-index 26 g-index

26 all docs

26 docs citations

26 times ranked

4133 citing authors

#	Article	IF	CITATIONS
1	Lipoproteins Contribute to the Anti-inflammatory Capacity of Lactobacillus plantarum WCFS1. Frontiers in Microbiology, 2020, 11, 1822.	1.5	13
2	Cathelicidins Inhibit <i>Escherichia coli</i> i>a€"Induced TLR2 and TLR4 Activation in a Viability-Dependent Manner. Journal of Immunology, 2017, 199, 1418-1428.	0.4	75
3	Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiology Ecology, 2017, 93, .	1.3	203
4	Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Frontiers in Immunology, 2017, 8, 1000.	2.2	25
5	Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE, 2017, 12, e0173004.	1.1	340
6	The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions. PLoS ONE, 2016, 11, e0145618.	1,1	31
7	Strain-Specific Features of Extracellular Polysaccharides and Their Impact on Lactobacillus plantarum-Host Interactions. Applied and Environmental Microbiology, 2016, 82, 3959-3970.	1.4	102
8	Human oral isolate Lactobacillus fermentum AGR1487 induces a pro-inflammatory response in germ-free rat colons. Scientific Reports, 2016, 6, 20318.	1.6	16
9	Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota. PLoS ONE, 2014, 9, e114277.	1.1	118
10	REG3Î ³ -deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunology, 2014, 7, 939-947.	2.7	151
11	Impact of Lactobacillus plantarum Sortase on Target Protein Sorting, Gastrointestinal Persistence, and Host Immune Response Modulation. Journal of Bacteriology, 2013, 195, 502-509.	1.0	37
12	Vectorial secretion of interleukin-8 mediates autocrine signalling in intestinal epithelial cells via apically located CXCR1. BMC Research Notes, 2013, 6, 431.	0.6	30
13	Challenges in translational research on probiotic lactobacilli: from in vitro assays to clinical trials. Beneficial Microbes, 2013, 4, 83-100.	1.0	13
14	The Impact of Lactobacillus plantarum WCFS1 Teichoic Acid D-Alanylation on the Generation of Effector and Regulatory T-cells in Healthy Mice. PLoS ONE, 2013, 8, e63099.	1.1	47
15	Probiotics Can Generate FoxP3 T-Cell Responses in the Small Intestine and Simultaneously Inducing CD4 and CD8 T Cell Activation in the Large Intestine. PLoS ONE, 2013, 8, e68952.	1.1	50
16	Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microbial Cell Factories, 2012, 11, 123.	1.9	50
17	Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival. PLoS ONE, 2012, 7, e35849.	1.1	41
18	L. plantarum, L. salivarius, and L. lactis Attenuate Th2 Responses and Increase Treg Frequencies in Healthy Mice in a Strain Dependent Manner. PLoS ONE, 2012, 7, e47244.	1.1	73

#	Article	IF	CITATIONS
19	Immunomodulatory effects of potential probiotics in a mouse peanut sensitization model. FEMS Immunology and Medical Microbiology, 2012, 65, 488-496.	2.7	51
20	Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation. Journal of Immunological Methods, 2011, 373, 136-142.	0.6	21
21	Epithelial crosstalk at the microbiota–mucosal interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4607-4614.	3.3	492
22	Probiotic modulation of dendritic cells and T cell responses in the intestine. Beneficial Microbes, 2010, 1, 317-326.	1.0	28
23	Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiology, 2010, 10, 293.	1.3	162
24	Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection. Malaria Journal, 2010, 9, 162.	0.8	13
25	Identification of Genetic Loci in Lactobacillus plantarum That Modulate the Immune Response of Dendritic Cells Using Comparative Genome Hybridization. PLoS ONE, 2010, 5, e10632.	1.1	170
26	Alterations in early cytokine-mediated immune responses to Plasmodium falciparum infection in Tanzanian children with mineral element deficiencies: a cross-sectional survey. Malaria Journal, 2010, 9, 130.	0.8	15