
Jadwiga Tritt-Goc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9093379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glass transition temperature and thermal decomposition of cellulose powder. Cellulose, 2008, 15, 445-451.	2.4	249
2	Solvent Effect on 1,2- <i>O</i> -(1-Ethylpropylidene)-α- <scp>d</scp> -glucofuranose Organogel Properties. Langmuir, 2009, 25, 8274-8279.	1.6	72
3	Magnetic resonance imaging study of the swelling kinetics of hydroxypropylmethylcellulose (HPMC) in water. Journal of Controlled Release, 2002, 80, 79-86.	4.8	62
4	Proton-conducting Microcrystalline Cellulose Doped with Imidazole. Thermal and Electrical Properties. Electrochimica Acta, 2015, 155, 38-44.	2.6	43
5	Dielectric Relaxation in Cellulose and its Derivatives. Acta Physica Polonica A, 2005, 108, 137-145.	0.2	42
6	Comparison of structural, thermal and proton conductivity properties of micro- and nanocelluloses. Carbohydrate Polymers, 2018, 200, 536-542.	5.1	40
7	Imidazole-doped nanocrystalline cellulose solid proton conductor: synthesis, thermal properties, and conductivity. Cellulose, 2018, 25, 281-291.	2.4	39
8	Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields. Cement and Concrete Research, 2005, 35, 2033-2040.	4.6	38
9	Influence of cellulose gel matrix on BMIMCl ionic liquid dynamics and conductivity. Cellulose, 2017, 24, 1641-1655.	2.4	37
10	Imidazole-Doped Cellulose as Membrane for Fuel Cells: Structural and Dynamic Insights from Solid-State NMR. Journal of Physical Chemistry C, 2016, 120, 19574-19585.	1.5	33
11	The swelling properties of hydroxypropyl methyl cellulose loaded with tetracycline hydrochloride: magnetic resonance imaging study. Solid State Nuclear Magnetic Resonance, 2004, 25, 35-41.	1.5	32
12	The use of the MRI technique in the evaluation of water distribution in tumbled porcine muscle. Meat Science, 2004, 67, 25-31.	2.7	32
13	Dynamics of a glycine molecule in a new ferroelectric glycine phosphite studied by proton NMR. Solid State Communications, 1998, 108, 189-192.	0.9	30
14	Thermal Properties of the Cel Made by Low Molecular Weight Gelator 1,2-O-(1-ethylpropylidene)-α-d-glucofuranose with Toluene and Molecular Dynamics of Solvent. Langmuir, 2008, 24, 534-540.	1.6	30
15	Translational dynamics of ionic liquid imidazolium cations at solid/liquid interface in gel polymer electrolyte. European Polymer Journal, 2015, 71, 210-220.	2.6	30
16	Influence of solvent on the thermal stability and organization of self-assembling fibrillar networks in methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside gels. Tetrahedron, 2011, 67, 7222-7230.	1.0	29
17	Novel supramolecular organogels based on a hydrazide derivative: non-polar solvent-assisted self-assembly, selective gelation properties, nanostructure, solvent dynamics. Soft Matter, 2013, 9, 7501.	1.2	28
18	Characterization of low molecular-weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside hydrogels and water diffusion in their networks. Tetrahedron, 2009, 65, 9801-9806.	1.0	25

#	Article	IF	CITATIONS
19	On the relation between the solvent parameters and the physical properties of methyl-4,6-O-benzylidene-α-d-glucopyranoside organogels. Tetrahedron, 2012, 68, 3803-3810.	1.0	25
20	The influence of the superplasticizer on the hydration and freezing processes in white cement studied by 1H spin-lattice relaxation time and single point imaging. Cement and Concrete Research, 2000, 30, 931-936.	4.6	24
21	Proton conductivity and proton dynamics in nanocrystalline cellulose functionalized with imidazole. Carbohydrate Polymers, 2019, 225, 115196.	5.1	23
22	Cellulose microfibers surface treated with imidazole as new proton conductors. Materials Chemistry and Physics, 2020, 239, 122056.	2.0	23
23	Evidence of Solventâ^'Gelator Interaction in Sugar-Based Organogel Studied by Field-Cycling NMR Relaxometry. Langmuir, 2010, 26, 17459-17464.	1.6	22
24	Novel application of NMR relaxometry in studies of diffusion in virgin rape oil. Food Chemistry, 2014, 152, 94-99.	4.2	22
25	¹⁷ O n.m.r. studies of amino acids in the solid state, in single―and polycrystalline forms. International Journal of Peptide and Protein Research, 1988, 31, 130-136.	0.1	20
26	Effect of gel matrix confinement on the solvent dynamics in supramolecular gels. Journal of Colloid and Interface Science, 2016, 472, 60-68.	5.0	20
27	In situ, real time observation of the disintegration of paracetamol tablets in aqueous solution by magnetic resonance imaging. European Journal of Pharmaceutical Sciences, 2002, 15, 341-346.	1.9	19
28	Spatially resolved solvent interaction with glassy HPMC polymers studied by magnetic resonance microscopy. Solid State Nuclear Magnetic Resonance, 2005, 28, 250-257.	1.5	19
29	The solvent dynamics at pore surfaces in molecular gels studied by field-cycling magnetic resonance relaxometry. Soft Matter, 2014, 10, 7810-7818.	1.2	19
30	The Solvent–Gelator Interaction as the Origin of Different Diffusivity Behavior of Diols in Gels Formed with Sugar-Based Low-Molecular-Mass Gelator. Journal of Physical Chemistry B, 2014, 118, 4005-4015.	1.2	18
31	Thermal Properties, Conductivity, and Spin-lattice Relaxation of Gel Electrolyte Based on Low Molecular Weight Gelator and Solution of High Temperature Ionic Liquid. Electrochimica Acta, 2015, 165, 122-129.	2.6	18
32	Electron spin echo studies of spin-lattice and spin-spin relaxation of SeO3- radicals in (NH4)3H(SeO4)2 crystal. Solid State Communications, 1993, 85, 585-587.	0.9	17
33	NMR chemical shift and asymmetric dipolar tensors of water protons in sodium nitroprusside (SNP). Chemical Physics, 1986, 102, 133-140.	0.9	16
34	Effect of surface coating of microcrystalline cellulose by imidazole molecules on proton conductivity. European Polymer Journal, 2016, 78, 186-194.	2.6	16
35	1,2-O-(1-Ethylpropylidene)-α-d-glucofuranose, a low molecular mass organogelator: benzene gel formation and their thermal stabilities. Tetrahedron Letters, 2008, 49, 6685-6689.	0.7	15
36	The gelation influence on diffusion and conductivity enhancement effect in renewable ionic gels based on a LMWG. Physical Chemistry Chemical Physics, 2018, 20, 5803-5817.	1.3	15

#	Article	IF	CITATIONS
37	NMR relaxometry study of gelatin based low-calorie soft candies. Molecular Physics, 2019, 117, 1034-1045.	0.8	15
38	Molecular motions and phase transitions in solid tris(nâ€propylammonium) hexabromobismuthate (III). Physica Status Solidi (B): Basic Research, 1996, 193, 341-346.	0.7	14
39	The hardening of Portland cement observed by1H spin-lattice relaxation and single-point imaging. Applied Magnetic Resonance, 2000, 18, 155-164.	0.6	14
40	Synthesis, thermal properties, conductivity and lifetime of proton conductors based on nanocrystalline cellulose surface-functionalized with triazole and imidazole. International Journal of Hydrogen Energy, 2020, 45, 13365-13375.	3.8	14
41	Hydration of Hydroxypropylmethyl Cellulose: Effects of pH and Molecular Mass. Acta Physica Polonica A, 2005, 108, 197-205.	0.2	14
42	The crystal structure and evidence of the phase transition in d-amphetamine sulfate, as studied by X-ray crystallography, DSC and NMR spectroscopy. New Journal of Chemistry, 2009, 33, 1894.	1.4	13
43	Interaction of chlorobenzene with gelator in methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside gel probed by proton fast field cycling NMR relaxometry. Tetrahedron, 2011, 67, 8170-8176.	1.0	13
44	MRI study of Fickian, case II and anomalous diffusion of solvents into hydroxypropylmethylcellulose. Applied Magnetic Resonance, 2005, 29, 605-615.	0.6	12
45	How we can interpret the T1 dispersion of MC, HPMC and HPC polymers above glass temperature?. Solid State Nuclear Magnetic Resonance, 2006, 30, 192-197.	1.5	12
46	Spin-lattice relaxation study of the methyl proton dynamics in solid 9,10-dimethyltriptycene (DMT). Solid State Nuclear Magnetic Resonance, 2009, 35, 194-200.	1.5	12
47	Magnetic resonance imaging study of the transport phenomena of solvent into the gel layer of hypromellose matrices containing tetracycline hydrochloride. Journal of Pharmacy and Pharmacology, 2010, 55, 1487-1493.	1.2	12
48	Synthesis and characterization of a new proton-conducting material based on imidazole and selenic acid. Solid State Ionics, 2012, 227, 96-101.	1.3	12
49	Ionic Conductivity and Thermal Properties of a Supramolecular Ionogel Made from a Sugar-Based Low Molecular Weight Gelator and a Quaternary Ammonium Salt Electrolyte Solution. Journal of the Electrochemical Society, 2016, 163, G187-G195.	1.3	12
50	Conservation process of archaeological waterlogged wood studied by spectroscopy and gradient NMR methods. Wood Science and Technology, 2019, 53, 1207-1222.	1.4	12
51	The kinetics of thermal processes in imidazole-doped nanocrystalline cellulose solid proton conductor. Cellulose, 2020, 27, 1989-2001.	2.4	12
52	Weak Inter- and Intralayer Exchange Coupling between Copper(II) Dimers and a Triplet Density Effect in EPR of Tris(ethylenediamine)cobalt(III) Bis(.muchloro)bis[trichlorocuprate(II)] Dichloride Dihydrate. Inorganic Chemistry, 1995, 34, 1852-1858.	1.9	11
53	Diffusive Diffraction Phenomenon Observed by PGSE NMR Technique in a Sugar-Based Low-Molecular-Mass Gel. Langmuir, 2012, 28, 14039-14044.	1.6	11
54	Dynamic processes and chemical composition of Lepidium sativum seeds determined by means of field-cycling NMR relaxometry and NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2012, 404, 3155-3164.	1.9	11

#	Article	IF	CITATIONS
55	Quantification of manganous ions in wine by NMR relaxometry. Talanta, 2020, 209, 120561.	2.9	11
56	Rotational Motion of the Ammonium Ions in (NH ₄) ₃ H(SeO ₄) ₂ Studied by NMR. Physica Status Solidi (B): Basic Research, 1993, 176, K13.	0.7	10
57	Molecular motions and phase transitions in solid bis-n-propylammonium pentabromoantimonate. Solid State Nuclear Magnetic Resonance, 1994, 3, 293-297.	1.5	10
58	The Molecular Origin of Nuclear Magnetic Relaxation in Methyl Cellulose and Hydroxypropylmethyl Cellulose. Journal of Polymer Research, 2006, 13, 201-206.	1.2	10
59	The structural dynamics in the proton-conducting imidazolium oxalate. Journal of Physics Condensed Matter, 2008, 20, 505101.	0.7	10
60	Dynamics and Proton Transport in Imidazole-Doped Nanocrystalline Cellulose Revealed by High-Resolution Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 18886-18893.	1.5	10
61	Magnetic resonance microimaging of pore freezing in cement: Effect of corrosion inhibitor. Journal of Applied Physics, 2000, 88, 7339-7345.	1.1	9
62	A possible application of magnetic resonance imaging for pharmaceutical research. European Journal of Pharmaceutical Sciences, 2011, 42, 354-364.	1.9	9
63	Proton dipolar coupling tensors in barium nitroprusside trihydrate. Journal of Physics and Chemistry of Solids, 1995, 56, 935-942.	1.9	8
64	Thermally reversible solidification of novel ionic liquid [im]HSO ₄ by self-nucleated rapid crystallization: investigations of ionic conductivity, thermal properties, and catalytic activity. RSC Advances, 2016, 6, 108896-108907.	1.7	8
65	Synthesis and characterization of triazole based nanocrystalline cellulose solid proton conductors. European Polymer Journal, 2021, 161, 110825.	2.6	8
66	Determination of dynamic parameters in amino acids from170 NMR line width measurements. Magnetic Resonance in Chemistry, 1991, 29, 156-163.	1.1	7
67	Proton NMR relaxation study of the motion of water molecules in hydrated nitroprussides. Journal of Physics and Chemistry of Solids, 1993, 54, 123-126.	1.9	7
68	Molecular motions in solid (CH3)2NH2H2PO4 studied by proton nuclear magnetic resonance. Solid State Communications, 1998, 106, 367-371.	0.9	7
69	Molecular Dynamics in a New Solid Glucofuranose-Based Low-Molecular-Weight Organogelator as Studied by 1H NMR. Applied Magnetic Resonance, 2008, 33, 431-438.	0.6	7
70	Morphology, molecular dynamics and electric conductivity of carbohydrate polymer films based on alginic acid and benzimidazole. Carbohydrate Research, 2011, 346, 2718-2726.	1.1	7
71	Effect of microwave irradiation on the hydroxypropyl methylcellulose powder and its hydrogel studied by Magnetic Resonance Imaging. Carbohydrate Polymers, 2011, 83, 166-170.	5.1	7
72	Dynamics of water molecules in barium nitroprusside trihydrate studied at low temperature by proton NMR. Molecular Physics, 1994, 83, 949-960.	0.8	6

#	Article	IF	CITATIONS
73	EPR evidence of the paramagnetism of a long-living metastable excited state of a sodium nitroprusside single crystal. Chemical Physics Letters, 1997, 268, 471-474.	1.2	6
74	Proton magnetic resonance microimaging of human trabecular bone. Solid State Nuclear Magnetic Resonance, 1999, 15, 91-98.	1.5	6
75	¹ H NMR Cryoporometry Study of the Melting Behavior of Water in White Cement. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2004, 59, 550-558.	0.7	6
76	1H NMR Relaxation Studies of Proton-Conducting Imidazolium Salts of Dicarboxylic Acids. Applied Magnetic Resonance, 2008, 34, 163-173.	0.6	6
77	NMR study of molecular dynamics in selected hydrophilic polymers. Solid State Nuclear Magnetic Resonance, 2004, 25, 42-46.	1.5	5
78	Properties of PVDF-MCM41 Nanocomposites Studied by Dielectric, Raman and NMR Spectroscopy. Ferroelectrics, 2014, 472, 64-76.	0.3	5
79	A nuclear magnetic resonance study of molecular motion in solid tris (n-propylammonium) enneachlorodiantimonate (III) (n-C3H7NH3)3Sb2Cl9. Solid State Nuclear Magnetic Resonance, 1997, 10, 73-78.	1.5	4
80	Spectroscopic and photopolymerization studies of benzyl methacrylate/poly(benzyl methacrylate) twoâ€component system. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1336-1348.	2.4	4
81	N.m.r. study of molecular dynamics in chemically crosslinked polyethylene. Polymer, 1985, 26, 557-560.	1.8	3
82	Melting behavior of water confined in nanopores of white cement studies by1H NMR cryoporometry: Effect of antifreeze additive and temperature. Applied Magnetic Resonance, 2005, 29, 639-653.	0.6	3
83	¹⁷ O, ¹⁴ N and ¹⁵ N n.m.r. studies of the CO ²⁺ complexes of cyclo(Pro ¹⁷ Oâ€Cly ¹⁵ N) and cyclo(Cly ¹⁷ Oâ€Pro) in aqueous solution. International Journal of Peptide and Protein Research, 1989, 34, 299-305.	0.1	3
84	1H Spin–Lattice Relaxation Study of Dynamical Inequivalence of Methyl Groups in Solid 1,2-O-(1-Ethylpropylidene)-α-d-Glucofuranose. Applied Magnetic Resonance, 2009, 36, 61-68.	0.6	3
85	Molecular motions in solid [N(CH3)2H2]3Sb2I9 studied by proton nuclear magnetic resonance spectroscopy. Solid State Nuclear Magnetic Resonance, 1995, 4, 101-104.	1.5	2
86	Motion of the water molecules and phase transitions in Sr[Fe(CN)5NO]*4H2O studied by proton NMR. Molecular Physics, 1995, 86, 193-200.	0.8	2
87	17O and 14 N n.m.r. studies of the Co (II) interaction with cyclo(Ala*â€Ala) in aqueous solution. International Journal of Peptide and Protein Research, 1987, 29, 406-414.	0.1	2
88	The influence of the motion of water molecules on proton dipolar coupling tensors in Sr{Fe(CN)5NO} 4H2O. Molecular Physics, 1996, 87, 139-150.	0.8	2
89	Nuclear magnetic resonance proton dynamics study of [N(CH3)2H2]3Bi2I9 at low temperature. Solid State Nuclear Magnetic Resonance, 1995, 4, 323-325.	1.5	1
90	The influence of the motion of water molecules on proton dipolar coupling tensors in Sr[Fe(CN)5NO]·4H2O. Molecular Physics, 1996, 87, 139-149.	0.8	1

#	Article	IF	CITATIONS
91	Molecular motion in solid [(CH3)2 CHNH3]2 BiBr5 and [(CH3)2 CHNH3]2SbBr5 as studied by proton nuclear magnetic resonance. Molecular Physics, 1997, 92, 687-692.	0.8	1
92	Modern Magnetic Resonances. Applied Magnetic Resonance, 2008, 34, 1-1.	0.6	1
93	Gelation Process of Toluene-Based bis-Urea in Cyclohexane Studied with Magnetic Resonance Imaging. Acta Physica Polonica A, 2005, 108, 81-87.	0.2	1
94	Electron Spin Echo Envelope Modulation Analysis of SeOÂ ⁻ 3Radical in (NH4)3H(SeO4)2Single Crystal. Acta Physica Polonica A, 1993, 84, 1131-1141.	0.2	1
95	NMR Study of the Molecular Dynamics of D-Amphetamine Sulfate Salt Powder. Applied Magnetic Resonance, 2008, 33, 439-446.	0.6	Ο
96	A Determination of the Dynamical Parameters in Amino Acids from Carboxylic- 17O NMR Linewidths Measurements. , 1990, , 584-585.		0