Peter S Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9093370/publications.pdf Version: 2024-02-01

DETED S SDENCED

#	Article	IF	CITATIONS
1	Parkinsonism and motor neuron disorders: Lessons from Western Pacific ALS/PDC. Journal of the Neurological Sciences, 2022, 433, 120021.	0.3	12
2	Migration, Environment and Climate Change. Sustainable Development Goals Series, 2022, , 53-65.	0.2	2
3	Mechanisms Underlying Long-Latency Neurodegenerative Diseases of Environmental Origin. , 2022, , 1-23.		0
4	The COVID-19 pandemic, an environmental neurology perspective. Revue Neurologique, 2022, 178, 499-511.	0.6	4
5	Nodding syndrome: A key role for sources of nutrition?. ENeurologicalSci, 2022, 27, 100401.	0.5	3
6	The etiology of nodding syndrome phenotypes remains unknown§,§§. Revue Neurologique, 2021, 177, 141-143.	0.6	1
7	Environmental neurology in the tropics. Journal of the Neurological Sciences, 2021, 421, 117287.	0.3	7
8	Cycad Genotoxin Methylazoxymethanol Disrupts the Brain Ubiquitin-Proteasome Pathway, Tau and α-Synuclein, as Reported in ALS-PDC. Journal of Neuropathology and Experimental Neurology, 2021, 80, 286-288.	0.9	4
9	SARS-CoV-2 infection and sleep disturbances: nitric oxide involvement and therapeutic opportunity. Sleep, 2021, 44, .	0.6	10
10	Kampŕmedicine and Muro disease (Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex): Postscript and Historical Footnote. ENeurologicalSci, 2021, 22, 100308.	0.5	4
11	Direct and Indirect Neurotoxic Potential of Metal/Metalloids in Plants and Fungi Used for Food, Dietary Supplements, and Herbal Medicine. Toxics, 2021, 9, 57.	1.6	9
12	Approaches to Understanding <scp>COVID</scp> â€19 and its Neurological Associations. Annals of Neurology, 2021, 89, 1059-1067.	2.8	16
13	The Role of Protein Adduction in Toxic Neuropathies of Exogenous and Endogenous Origin. Toxics, 2021, 9, 98.	1.6	9
14	Case-Control Study of Nodding Syndrome in Acholiland: Urinary Multi-Mycotoxin Screening. Toxins, 2021, 13, 313.	1.5	6
15	Lytico-bodig in Guam: Historical links between diet and illness during and after Spanish colonization. Journal of the History of the Neurosciences, 2021, 30, 335-374.	0.1	5
16	An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. Journal of the Neurological Sciences, 2021, 427, 117558.	0.3	21
17	Commentary on Singh et al. (2020) Postzygotic Somatic Mutations in the Human Brain Expand the Threshold-Liability Model of Schizophrenia. Frontiers in Psychiatry, 2021, 12, 653624.	1.3	2
18	Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chemical Research in Toxicology, 2021, 34, 1953-1969.	1.7	18

#	Article	IF	CITATIONS
19	Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease. Frontiers in Neuroscience, 2021, 15, 752153.	1.4	8
20	Diabetes mellitus is associated with elevated urinary pyrrole markers of Î ³ -diketones known to cause axonal neuropathy. BMJ Open Diabetes Research and Care, 2020, 8, e001575.	1.2	5
21	Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. Journal of the Neurological Sciences, 2020, 419, 117185.	0.3	25
22	<p>Etiology of Retinal and Cerebellar Pathology in Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex</p> . Eye and Brain, 2020, Volume 12, 97-104.	3.8	16
23	Jean Rodier: History of Manganism in Morocco. NeuroToxicology, 2020, 81, 66-69.	1.4	1
24	The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. Journal of the Neurological Sciences, 2020, 414, 116884.	0.3	190
25	COVID-19 international neurological registries. Lancet Neurology, The, 2020, 19, 484-485.	4.9	14
26	Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-21.	1.9	14
27	Neuroprotein Targets of γ-Diketone Metabolites of Aliphatic and Aromatic Solvents That Induce Central–Peripheral Axonopathy. Toxicologic Pathology, 2020, 48, 411-421.	0.9	8
28	Kampŕmedicine and Muro disease (Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex). ENeurologicalSci, 2020, 18, 100230.	0.5	11
29	Hypothesis: Etiologic and Molecular Mechanistic Leads for Sporadic Neurodegenerative Diseases Based on Experience With Western Pacific ALS/PDC. Frontiers in Neurology, 2019, 10, 754.	1.1	29
30	Historical setting and neuropathology of lathyrism: Insights from the neglected 1944 report by Oliveras de la Riva. Journal of the History of the Neurosciences, 2019, 28, 361-386.	0.1	5
31	Flavanol-rich lychee fruit extract substantially reduces progressive cognitive and molecular deficits in a triple-transgenic animal model of Alzheimer disease. Nutritional Neuroscience, 2019, 24, 1-15.	1.5	5
32	Medical management, prevention and mitigation of environmental risks factors in Neurology. Revue Neurologique, 2019, 175, 698-704.	0.6	1
33	Decision-making under uncertainty in environmental health policy: new approaches. Environmental Health and Preventive Medicine, 2019, 24, 57.	1.4	11
34	Plants with neurotoxic potential in undernourished subjects. Revue Neurologique, 2019, 175, 631-640.	0.6	4
35	Carcinogenic risk of <i>N</i> -Nitrosamines in Shanghai Drinking Water: Indications for the Use of Ozone Pretreatment. Environmental Science & Technology, 2019, 53, 7007-7018.	4.6	31
36	ALS and environment: Clues from spatial clustering?. Revue Neurologique, 2019, 175, 652-663.	0.6	21

#	Article	IF	CITATIONS
37	Dysregulation of Myosin Complex and Striated Muscle Contraction Pathway in the Brains of ALS–SOD1 Model Mice. ACS Chemical Neuroscience, 2019, 10, 2408-2417.	1.7	15
38	Low-dose oral copper treatment changes the hippocampal phosphoproteomic profile and perturbs mitochondrial function in a mouse model of Alzheimer's disease. Free Radical Biology and Medicine, 2019, 135, 144-156.	1.3	40
39	Chemicals, somatic mutations and neurodegeneration: evidence from Western Pacific amyotrophic lateral sclerosisâ€parkinsonismâ€dementia complex (ALSâ€PDC). Neuropathology and Applied Neurobiology, 2019, 45, 525-527.	1.8	10
40	Nodding syndrome phenotypes. Revue Neurologique, 2019, 175, 679-685.	0.6	12
41	Clean air for Brain Heath; ongoing agenda of 2018 World Brain Day. Journal of the Neurological Sciences, 2019, 397, 61-62.	0.3	2
42	Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure: implication for Alzheimer's disease. Archives of Toxicology, 2018, 92, 1363-1382.	1.9	17
43	Health of Vulnerable Populations. Academic Medicine, 2018, 93, 1263-1264.	0.8	1
44	Nodding Syndrome – An Investment Case for Global Health?. Journal of Neuroinfectious Diseases, 2018, 09, .	0.2	2
45	A real-time medical cartography of epidemic disease (Nodding syndrome) using village-based lay mHealth reporters. PLoS Neglected Tropical Diseases, 2018, 12, e0006588.	1.3	15
46	Cycad β-N-methylamino-L-alanine (BMAA), methylazoxymethanol, genotoxicity, and neurodegeneration. Toxicon, 2018, 155, 49-50.	0.8	10
47	Formaldehyde, DNA damage, ALS and related neurodegenerative diseases. Journal of the Neurological Sciences, 2018, 391, 141-142.	0.3	16
48	Heavy Exposure of Waste Collectors to Polycyclic Aromatic Hydrocarbons in a Poor Rural Area of Middle China. Environmental Science & Technology, 2018, 52, 8866-8875.	4.6	17
49	The Prenylflavonoid Xanthohumol Reduces Alzheimer-Like Changes and Modulates Multiple Pathogenic Molecular Pathways in the Neuro2a/APPswe Cell Model of AD. Frontiers in Pharmacology, 2018, 9, 199.	1.6	26
50	The Isoquinoline Alkaloid Dauricine Targets Multiple Molecular Pathways to Ameliorate Alzheimer-Like Pathological Changes <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-19.	1.9	16
51	TRPC1 Deletion Causes Striatal Neuronal Cell Apoptosis and Proteomic Alterations in Mice. Frontiers in Aging Neuroscience, 2018, 10, 72.	1.7	5
52	Mitochondrial Molecular Abnormalities Revealed by Proteomic Analysis of Hippocampal Organelles of Mice Triple Transgenic for Alzheimer Disease. Frontiers in Molecular Neuroscience, 2018, 11, 74.	1.4	30
53	Climatic Factors Under the Tropics. , 2018, , 25-39.		0
54	The enigma of litchi toxicity: an emerging health concern in southern Asia. The Lancet Global Health, 2017, 5, e383-e384.	2.9	19

#	Article	IF	CITATIONS
55	Nodding Syndrome in the Spotlight – Placing Recent Findings in Perspective. Trends in Parasitology, 2017, 33, 490-492.	1.5	14
56	Response to R. Colebunders: Helminth infections in Nodding syndrome. Journal of the Neurological Sciences, 2017, 372, 441.	0.3	0
57	Food Plant Chemicals Linked With Neurological and Neurodegenerative Disease. Advances in Neurotoxicology, 2017, , 247-278.	0.7	6
58	Azañón's disease. A 19th century epidemic of neurolathyrism in Spain. Revue Neurologique, 2016, 172, 748-755.	0.6	5
59	Vervets and macaques: Similarities and differences in their responses to I -BMAA. NeuroToxicology, 2016, 56, 284-286.	1.4	15
60	Global environmental contamination: Challenge for the human brain. NeuroToxicology, 2016, 53, 301.	1.4	0
61	Nodding syndrome: 2015 International Conference Report and Gulu Accord. ENeurologicalSci, 2016, 3, 80-83.	0.5	20
62	Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. NeuroToxicology, 2016, 56, 269-283.	1.4	34
63	Environmental, dietary and case-control study of Nodding Syndrome in Uganda: A post-measles brain disorder triggered by malnutrition?. Journal of the Neurological Sciences, 2016, 369, 191-203.	0.3	49
64	Parkinson's disease and solvents: Is there a causal link?. Revue Neurologique, 2016, 172, 761-765.	0.6	5
65	Environmental Neurotoxins Linked to a Prototypical Neurodegenerative Disease. , 2015, , 211-252.		7
66	Probable Toxic Cause for Suspected Lychee-Linked Viral Encephalitis. Emerging Infectious Diseases, 2015, 21, 904-905.	2.0	14
67	Nodding syndrome in Kitgum District, Uganda: association with conflict and internal displacement. BMJ Open, 2014, 4, e006195.	0.8	32
68	Interprofessional Global Health Education in a Cosmopolitan Community of North America. Academic Medicine, 2014, 89, 1149-1152.	0.8	19
69	Animal models of brain maldevelopment induced by cycad plant genotoxins. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 247-255.	3.6	31
70	Nodding syndrome: origins and natural history of a longstanding epileptic disorder in sub-Saharan Africa. African Health Sciences, 2013, 13, 176-82.	0.3	35
71	Nodding syndrome in Mundri county, South Sudan: Environmental, nutritional and infectious factors. African Health Sciences, 2013, 13, 183-204.	0.3	59
72	Clinical and epidemiologic characteristics of nodding syndrome in Mundri County, southern Sudan. African Health Sciences, 2013, 12, 242-8.	0.3	97

#	Article	IF	CITATIONS
73	Interrelationships of undernutrition and neurotoxicity: Food for thought and research attention. NeuroToxicology, 2012, 33, 605-616.	1.4	34
74	Unraveling 50-Year-Old Clues Linking Neurodegeneration and Cancer to Cycad Toxins: Are microRNAs Common Mediators?. Frontiers in Genetics, 2012, 3, 192.	1.1	33
75	Western Pacific ALS-PDC: a prototypical neurodegenerative disorder linked to DNA damage and aberrant proteogenesis?. Frontiers in Neurology, 2012, 3, 180.	1.1	14
76	Does the cycad genotoxin MAM implicated in Guam ALS-PDC induce disease-relevant changes in mouse brain that includes olfaction?. Communicative and Integrative Biology, 2011, 4, 731-734.	0.6	16
77	Is Neurodegenerative Disease a Long-Latency Response to Early-Life Genotoxin Exposure?. International Journal of Environmental Research and Public Health, 2011, 8, 3889-3921.	1.2	57
78	The Cycad Genotoxin MAM Modulates Brain Cellular Pathways Involved in Neurodegenerative Disease and Cancer in a DNA Damage-Linked Manner. PLoS ONE, 2011, 6, e20911.	1.1	57
79	Neurotoxic cycad components and Western Pacific ALS/PDC. Annals of Neurology, 2010, 68, 975-976.	2.8	8
80	THE ALS/PDC SYNDROME OF GUAM AND THE CYCAD HYPOTHESIS. Neurology, 2009, 72, 473-476.	1.5	35
81	Probing Mechanisms of Axonopathy. Part II: Protein Targets of 2,5-Hexanedione, the Neurotoxic Metabolite of the Aliphatic Solvent n-Hexane. Toxicological Sciences, 2009, 107, 482-489.	1.4	26
82	New Insights into Mechanisms of $\hat{1}^3$ -Diketone-Induced Axonopathy. Neurochemical Research, 2009, 34, 1919-1923.	1.6	4
83	Neurotoxic Disorders. , 2009, , 543-564.		0
84	Probing Mechanisms of Axonopathy. Part I: Protein Targets of 1,2-Diacetylbenzene, the Neurotoxic Metabolite of Aromatic Solvent 1,2-Diethylbenzene. Toxicological Sciences, 2008, 105, 134-141.	1.4	21
85	Chapter 18 Toxic disorders of the upper motor neuron system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 353-372.	1.0	22
86	Axonopathy-Inducing 1,2-Diacetylbenzene Forms Adducts with Motor and Cytoskeletal Proteins Required for Axonal Transport. Neurochemical Research, 2007, 32, 2152-2159.	1.6	17
87	β-Cyano-L-alanine toxicity: Evidence for the involvement of an excitotoxic mechanism. Natural Toxins, 2006, 4, 247-253.	1.0	12
88	Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry, 2006, 67, 107-121.	1.4	142
89	Monocyclic and dicyclic hydrocarbons: structural requirements for proximal giant axonopathy. Acta Neuropathologica, 2006, 112, 317-324.	3.9	15

90 On the decline and etiology of high-incidence motor system disease in West Papua (southwest New) Tj ETQq0 0 0 ggBT /Overlack 10 Tf

#	Article	IF	CITATIONS
91	A new murine model of giant proximal axonopathy. Acta Neuropathologica, 2005, 109, 405-410.	3.9	27
92	Chromogenic and Neurotoxic Effects of an Aliphatic γ-Diketone:  Computational Insights into the Molecular Structures and Mechanism. Journal of Physical Chemistry B, 2004, 108, 6098-6104.	1.2	18
93	Computational Insights into the Chemical Structures and Mechanisms of the Chromogenic and Neurotoxic Effects of Aromatic γ-diketones. Journal of Physical Chemistry B, 2003, 107, 2853-2861.	1.2	21
94	Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology, 2003, 61, 742-749.	1.5	255
95	Lathyrism: aqueous leaching reduces grass-pea neurotoxicity. Lancet, The, 2003, 362, 1775-1776.	6.3	18
96	Theoretical Determination of Chromophores in the Chromogenic Effects of Aromatic Neurotoxicants. Journal of the American Chemical Society, 2002, 124, 2744-2752.	6.6	38
97	Illness experience of Gulf War veterans possibly exposed to chemical warfare agents. American Journal of Preventive Medicine, 2002, 23, 200-206.	1.6	37
98	Aromatic as well as aliphatic hydrocarbon solvent axonopathy. International Journal of Hygiene and Environmental Health, 2002, 205, 131-136.	2.1	28
99	Action of β-N-Oxalylamino-l-Alanine on Mouse Brain NADH-Dehydrogenase Activity. Journal of Neurochemistry, 2002, 65, 1842-1848.	2.1	19
100	Amino Acid and Protein Targets of 1,2-Diacetylbenzene, a Potent Aromatic Î ³ -Diketone That Induces Proximal Neurofilamentous Axonopathy. Toxicology and Applied Pharmacology, 2002, 183, 55-65.	1.3	29
101	Self-Reported Exposures and Their Association With Unexplained Illness in a Population-Based Case-Control Study of Gulf War Veterans. Journal of Occupational and Environmental Medicine, 2001, 43, 1041-1056.	0.9	30
102	Discriminating mild parkinsonism: Methods for epidemiological research. Movement Disorders, 2001, 16, 33-40.	2.2	63
103	1,2-Diacetylbenzene, the Neurotoxic Metabolite of a Chromogenic Aromatic Solvent, Induces Proximal Axonopathy. Toxicology and Applied Pharmacology, 2001, 177, 121-131.	1.3	40
104	Aiding African Agriculture. Science, 2000, 289, 2281-2281.	6.0	0
105	Bioactivation of cyanide to cyanate in sulfur amino acid deficiency: relevance to neurological disease in humans subsisting on cassava. Toxicological Sciences, 1999, 50, 228-235.	1.4	75
106	DAMAGE AND REPAIR OF NERVE CELL DNA IN TOXIC STRESS*. Drug Metabolism Reviews, 1999, 31, 589-618.	1.5	52
107	FOOD TOXINS, AMPA RECEPTORS, AND MOTOR NEURON DISEASES*. Drug Metabolism Reviews, 1999, 31, 561-587.	1.5	77
108	Sodium cyanate alters glutathione homeostasis in rodent brain: relationship to neurodegenerative diseases in protein-deficient malnourished populations in Africa. Brain Research, 1999, 820, 12-19.	1.1	34

#	Article	IF	CITATIONS
109	TOXIC NEURONAL APOPTOSIS AND MODIFICATIONS OF TAU AND APP GENE AND PROTEIN EXPRESSIONS*. Drug Metabolism Reviews, 1999, 31, 635-647.	1.5	23
110	The Guam Cycad Toxin Methylazoxymethanol Damages Neuronal DNA and Modulates Tau mRNA Expression and Excitotoxicity. Experimental Neurology, 1999, 155, 11-21.	2.0	64
111	Strategies to Assess Validity of Self-Reported Exposures during the Persian Gulf War. Environmental Research, 1999, 81, 195-205.	3.7	57
112	DIETARY DEFICIENCY OF CYSTINE AND METHIONINE IN RATS ALTERS THIOL HOMEOSTASIS REQUIRED FOR CYANIDE DETOXIFICATION. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1998, 55, 583-595.	1.1	14
113	U.S. Gulf War Veterans: Service periods in theater, differential exposures, and persistent unexplained illness. Toxicology Letters, 1998, 102-103, 515-521.	0.4	17
114	Clinical Effects of Low-Level Exposures to Chemical Warfare Agents in Mice and Chickens. Drug and Chemical Toxicology, 1998, 21, 183-190.	1.2	13
115	Clinical and employment outcomes of carpal tunnel syndrome in oregon workers' compensation recipients. Journal of Occupational Rehabilitation, 1997, 7, 61-73.	1.2	8
116	Potential role of environmental genotoxic agents in diabetes mellitus and neurodegenerative diseases. Biochemical Pharmacology, 1996, 51, 1585-1591.	2.0	22
117	In vitro toxicological investigations of isoxazolinone amino acids ofLathyrus sativus. Natural Toxins, 1995, 3, 58-64.	1.0	23
118	Isolation and identification of two potent neurotoxins, aspartic acid and glutamic acid, from yellow star thistle (Centaurea solstitialis). Natural Toxins, 1995, 3, 174-180.	1.0	15
119	Studies of the etiology and pathogenesis of motor neuron diseases: III. Magnetic cortical stimulation in patients with lathyrism. Acta Neurologica Scandinavica, 1993, 88, 412-416.	1.0	15
120	Neurologic Diseases Associated with Use of Plant Components with Toxic Potential. Environmental Research, 1993, 62, 106-113.	3.7	40
121	Pattern of Lathyrus sativus (grass pea) consumption and beta-N-oxalyl-α-β-diaminoproprionic acid (β-ODAP) content of food samples in the lathyrism endemic region of northwest ethiopia. Nutrition Research, 1993, 13, 1113-1126.	1.3	41
122	Content of the neurotoxins cycasin (methylazoxymethanol βâ€Dâ€glucoside) and BNLAA (β― <i>N</i>) Tj ETQ	<u>0</u> q0_0_0 rg	BT /Overlock 1
123	Slow toxins, biologic markers, and long″atency neurodegenerative disease in the western Pacific region. Neurology, 1991, 41, 62-66.	1.5	69
124	Long-latency neurodegenerative disease in the western Pacific. Geriatrics, 1991, 46 Suppl 1, 37-42.	0.3	0
125	Lathyrism and western Pacific amyotrophic lateral sclerosis: etiology of short and long latency motor system disorders. Advances in Neurology, 1991, 56, 287-99.	0.8	14
126	Plant-Derived Neurotoxic Amino Acids (?-N-Oxalylamino-l-Alanine and ?-N-Methylamino-l-Alanine):	2.1	24

Effects on Central Monoamine Neurons. Journal of Neurochemistry, 1990, 55, 941-949. 126 nej

#	Article	IF	CITATIONS
127	Lathyrism in Rural Northwestern Ethiopia: A Highly Prevalent Neurotoxic Disorder. International Journal of Epidemiology, 1990, 19, 664-672.	0.9	81
128	Etiology of Alzheimer's disease: a western pacific view. Advances in Neurology, 1990, 51, 79-82.	0.8	2
129	In vivo and in vitro regional differential sensitivity of neuropathy target esterase to Di-n-butyl-2,2-dichlorovinyl phosphate. Archives of Toxicology, 1989, 63, 469-473.	1.9	32
130	-N-Oxalylamino-L-Alanine Action on Glutamate Receptors. Journal of Neurochemistry, 1989, 53, 710-715.	2.1	94
131	Cold Blockade of Axonal Transport Activates Premitotic Activity of Schwann Cells and Wallerian Degeneration. Journal of Neurochemistry, 1988, 50, 490-496.	2.1	25
132	Studies on the etiology and pathogenesis of motor neuron diseases. II Neurology, 1988, 38, 435-435.	1.5	36
133	Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science, 1987, 237, 517-522.	6.0	875
134	STUDIES ON THE AETIOLOGY AND PATHOGENESIS OF MOTOR NEURON DISEASES. Brain, 1987, 110, 149-165.	3.7	124
135	Guam ALS/Parkinsonism-Dementia: A Long-Latency Neurotoxic Disorder Caused by "Slow Toxin(s)―in Food?. Canadian Journal of Neurological Sciences, 1987, 14, 347-357.	0.3	121
136	Stereospecific acute neuronotoxicity of â€~uncommon' plant amino acids linked to human motor-system diseases. Brain Research, 1987, 410, 375-379.	1.1	95
137	Specific antagonism of excitotoxic action of â€~uncommon' amino acids assayed in organotypic mouse cortical cultures. Brain Research, 1987, 425, 120-127.	1.1	156
138	CYCAD USE AND MOTOR NEURONE DISEASE IN KII PENINSULA OF JAPAN. Lancet, The, 1987, 330, 1462-1463.	6.3	67
139	CYCAD USE AND MOTOR NEURONE DISEASE IN IRIAN JAYA. Lancet, The, 1987, 330, 1273-1274.	6.3	49
140	Specific antagonism of behavioral action of ?uncommon? amino acids linked to motor-system diseases. Synapse, 1987, 1, 248-253.	0.6	63
141	Progressive Deficit of Retrograde Axonal Transport Is Associated with the Pathogenesis of Di-n-Butyl Dichlorvos Axonopathy. Journal of Neurochemistry, 1987, 49, 1515-1522.	2.1	74
142	Rapid Anterograde Spread of Premitotic Activity Along Degenerating Cat Sciatic Nerve. Journal of Neurochemistry, 1987, 48, 111-114.	2.1	13
143	Discovery and Partial Characterization of Primate Motorâ€System Toxins. Novartis Foundation Symposium, 1987, 126, 221-238.	1.2	21
144	Detection and characterization of plant-derived amino acid motorsystem toxins in mouse CNS cultures. Progress in Clinical and Biological Research, 1987, 253, 349-61.	0.2	3

#	Article	IF	CITATIONS
145	LATHYRISM: EVIDENCE FOR ROLE OF THE NEUROEXCITATORY AMINOACID BOAA. Lancet, The, 1986, 328, 1066-1067.	6.3	341
146	MOTORNEURONE DISEASE ON GUAM: POSSIBLE ROLE OF A FOOD NEUROTOXIN. Lancet, The, 1986, 327, 965.	6.3	96
147	Biochemical Studies on 5'-Nucleotidase of Schwann Cells in Degenerated Nerve. Journal of Neurochemistry, 1985, 45, 324-327.	2.1	8
148	?-N-Oxalylamino-l-Alanine: Action on High-Affinity Transport of Neurotransmitters in Rat Brain and Spinal Cord Synaptosomes. Journal of Neurochemistry, 1985, 44, 886-892.	2.1	30
149	Tropical myeloneuropathies. Neurology, 1985, 35, 1158-1158.	1.5	124
150	Single Doses of Acrylamide Reduce Retrograde Transport Velocity. Journal of Neurochemistry, 1984, 43, 1401-1408.	2.1	77
151	Cyclic AMP-stimulated protein kinase activity in rabbit peripheral myelin. Neurochemical Research, 1984, 9, 121-132.	1.6	1
152	A tissue culture model of methyl ethyl ketone's potentiation of n-hexane neurotoxicity. NeuroToxicology, 1984, 5, 43-52.	1.4	3
153	Isolation and Partial Characterization of Plasmalemma from Quiescent Schwann Cells in Denervated Cat Sciatic Nerve. Journal of Neurochemistry, 1983, 41, 222-229.	2.1	16
154	Rapid reorganization of the axonal cytoskeleton induced by a gamma diketone. Brain Research, 1983, 270, 162-164.	1.1	24
155	Ultrastructural Studies of the Dying-back Process. Journal of Neuropathology and Experimental Neurology, 1983, 42, 153-165.	0.9	30
156	Lathyrism: a neurotoxic disease. Neurobehavioral Toxicology and Teratology, 1983, 5, 625-9.	0.3	43
157	Ultrastructural studies of the dying-back process. VI. Examination of nerve fibers undergoing giant axonal degeneration in organotypic culture. Journal of Neuropathology and Experimental Neurology, 1983, 42, 153-65.	0.9	8
158	The Pathogenesis of Primary Internodal Demyelination Produced by Acetyl Ethyl Tetramethyl Tetralin: Evidence for Preserved Schwann Cell Somal Function. Journal of Neuropathology and Experimental Neurology, 1981, 40, 112-122.	0.9	10
159	The Mammalian Peripheral Nervous System in Old Age. , 1981, , 35-103.		24
160	Volatile metabolites in sera of normal and diabetic patients. Biomedical Applications, 1980, 182, 137-145.	1.7	36
161	Ultrastructural studies of the dying-back process. V. Axonal neurofilaments accumulate at sites of 2,5-hexanedione application: Evidence for nerve fibre dysfunction in experimental hexacarbon neuropathy. Journal of Neurocytology, 1980, 9, 505-516.	1.6	41
162	The Enlarging View of Hexacarbon Neurotoxicity. CRC Critical Reviews in Toxicology, 1980, 7, 279-356.	4.9	222

#	Article	IF	CITATIONS
163	Neurotoxic fragrance produces ceroid and myelin disease. Science, 1979, 204, 633-635.	6.0	51
164	Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies?. Annals of Neurology, 1979, 5, 501-507.	2.8	222
165	Clioquinol and 2,5-hexanedione induce different types of distal axonopathy in the dog. Acta Neuropathologica, 1979, 47, 213-221.	3.9	38
166	Cellular responses to neurotoxic compounds of environmental significance. Neurobehavioral Toxicology, 1979, 1 Suppl 1, 189-91.	0.2	0
167	On the specific molecular configuration of neurotoxic aliphatic hexacarbon compounds causing central-peripheral distal axonopathy. Toxicology and Applied Pharmacology, 1978, 44, 17-28.	1.3	136
168	Environmental hydrocarbons produce degeneration in cat hypothalamus and optic tract. Science, 1978, 199, 199-200.	6.0	96
169	Ultrastructural Studies of the Dying-Back Process. Journal of Neuropathology and Experimental Neurology, 1977, 36, 276-299.	0.9	263
170	Ultrastructural Studies of the Dying-Back Process. Journal of Neuropathology and Experimental Neurology, 1977, 36, 300-320.	0.9	232
171	COPPER BINDING AT PNS NODES OF RANVIER DURING DEMYELINATION AND REMYELINATION IN THE PERINEURIAL WINDOW. Neuropathology and Applied Neurobiology, 1976, 2, 459-470.	1.8	25
172	Toxicity of Methyl n-Butyl Ketone. Archives of Environmental Health, 1975, 30, 317-318.	0.4	5
173	Ultrastructural studies of the dying-back process II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons. Journal of Neurocytology, 1974, 3, 763-783.	1.6	183
174	A Review of Acrylamide Neurotoxicity Part I. Properties, Uses and Human Exposure. Canadian Journal of Neurological Sciences, 1974, 1, 143-150.	0.3	180
175	A Review of Acrylamide Neurotoxicity Part II. Experimental Animal Neurotoxicity and Pathologic Mechanisms. Canadian Journal of Neurological Sciences, 1974, 1, 152-169.	0.3	211
176	An ultrastructural study of the inner core of the Pacinian corpuscle. Journal of Neurocytology, 1973, 2, 217-235.	1.6	144
177	Axon diameter and myelin thickness?unusual relationships in dorsal root ganglia. The Anatomical Record, 1973, 176, 225-243.	2.3	58