Kory W Hedman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9092835/publications.pdf

Version: 2024-02-01

65 2,530 22 40 papers citations h-index g-index

65 65 65 65 1593

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	An Accelerated-Decomposition Approach for Security-Constrained Unit Commitment With Corrective Network Reconfiguration. IEEE Transactions on Power Systems, 2022, 37, 887-900.	4.6	16
2	An Enhanced Energy Management System Including a Real-Time Load-Redistribution Threat Analysis Tool and Cyber-Physical SCED. IEEE Transactions on Power Systems, 2022, 37, 3346-3358.	4.6	8
3	A Detection Mechanism Against Load-Redistribution Attacks in Smart Grids. IEEE Transactions on Smart Grid, 2021, 12, 704-714.	6.2	37
4	Enhancing Power System Cyber-Security With Systematic Two-Stage Detection Strategy. IEEE Transactions on Power Systems, 2020, 35, 1549-1561.	4.6	27
5	A Data-Driven Reserve Response Set Policy for Power Systems With Stochastic Resources. IEEE Transactions on Sustainable Energy, 2019, 10, 693-705.	5.9	8
6	Enhanced Energy Management System With Corrective Transmission Switching Strategyâ€"Part I: Methodology. IEEE Transactions on Power Systems, 2019, 34, 4490-4502.	4.6	32
7	Enhanced Energy Management System With Corrective Transmission Switching Strategyâ€"Part II: Results and Discussion. IEEE Transactions on Power Systems, 2019, 34, 4503-4513.	4.6	17
8	Pricing Implications of Transmission Security Modeling In Electric Energy Markets. , 2019, , .		2
9	Identifying an Exploitable Structure for the Core Problem of Load-Redistribution Attack Problems. , 2019, , .		4
10	Conditions for Ramp Rates Causing Uplift. , 2019, , .		1
10	Conditions for Ramp Rates Causing Uplift., 2019, , . A Reserve Response Set Model for Systems with Stochastic Resources. IEEE Transactions on Power Systems, 2018, 33, 4038-4049.	4.6	7
	A Reserve Response Set Model for Systems with Stochastic Resources. IEEE Transactions on Power	4.6	
11	A Reserve Response Set Model for Systems with Stochastic Resources. IEEE Transactions on Power Systems, 2018, 33, 4038-4049.		7
11 12	A Reserve Response Set Model for Systems with Stochastic Resources. IEEE Transactions on Power Systems, 2018, 33, 4038-4049. Market Implications of Wind Reserve Margin. IEEE Transactions on Power Systems, 2018, 33, 5161-5170. Reserve Policy Optimization for Scheduling Wind Energy and Reserve. IEEE Transactions on Power	4.6	9
11 12 13	A Reserve Response Set Model for Systems with Stochastic Resources. IEEE Transactions on Power Systems, 2018, 33, 4038-4049. Market Implications of Wind Reserve Margin. IEEE Transactions on Power Systems, 2018, 33, 5161-5170. Reserve Policy Optimization for Scheduling Wind Energy and Reserve. IEEE Transactions on Power Systems, 2018, 33, 19-31.	4.6	7 9 39
11 12 13	A Reserve Response Set Model for Systems with Stochastic Resources. IEEE Transactions on Power Systems, 2018, 33, 4038-4049. Market Implications of Wind Reserve Margin. IEEE Transactions on Power Systems, 2018, 33, 5161-5170. Reserve Policy Optimization for Scheduling Wind Energy and Reserve. IEEE Transactions on Power Systems, 2018, 33, 19-31. Enhanced Assessment of Power System Behavior during Multiple Contingencies., 2018, ,.	4.6	7 9 39 4
11 12 13 14	A Reserve Response Set Model for Systems with Stochastic Resources. IEEE Transactions on Power Systems, 2018, 33, 4038-4049. Market Implications of Wind Reserve Margin. IEEE Transactions on Power Systems, 2018, 33, 5161-5170. Reserve Policy Optimization for Scheduling Wind Energy and Reserve. IEEE Transactions on Power Systems, 2018, 33, 19-31. Enhanced Assessment of Power System Behavior during Multiple Contingencies., 2018, ,. Enhancing System Security via Out-of-Market Correction Procedures., 2018, ,.	4.6	7 9 39 4

#	Article	IF	CITATIONS
19	Computationally Efficient Adjustment of FACTS Set Points in DC Optimal Power Flow With Shift Factor Structure. IEEE Transactions on Power Systems, 2017, 32, 1733-1740.	4.6	51
20	Real-time contingency analysis with corrective transmission switching. , 2017, , .		1
21	An Enhanced Security-Constrained Unit Commitment Model with Reserve Response Set Policies. , 2017, ,		5
22	Enhanced Pumped Hydro Storage Utilization using Policy Functions. IEEE Transactions on Power Systems, 2016, , 1-1.	4.6	14
23	A data-driven heuristic for corrective transmission switching. , 2016, , .		4
24	Towards smart corrective switching: analysis and advancement of PJM's switching solutions. IET Generation, Transmission and Distribution, 2016, 10, 1984-1992.	1.4	33
25	Evaluation of the adjustable-speed pumped hydro storage in systems with renewable resources. , 2016, , .		4
26	Fast heuristics for transmission outage coordination. , 2016, , .		6
27	Flexible operation of batteries in power system scheduling with renewable energy. , 2016, , .		1
28	Risk-based penalty price determination procedure for transmission constraint relaxations., 2016,,.		2
29	Harnessing Flexible Transmission: Corrective Transmission Switching for ISO-NE. IEEE Power and Energy Technology Systems Journal, 2016, 3, 109-118.	3.5	21
30	Impacts of Constraint Relaxations on Power System Operational Security. IEEE Power and Energy Technology Systems Journal, 2016, 3, 99-108.	3 . 5	8
31	Flexible Operation of Batteries in Power System Scheduling With Renewable Energy. IEEE Transactions on Sustainable Energy, 2016, 7, 685-696.	5.9	179
32	Analyzing the Impacts of Constraint Relaxation Practices in Electric Energy Markets. IEEE Transactions on Power Systems, 2016, 31, 2566-2577.	4.6	17
33	Transmission expansion planning model considering conductor thermal dynamics and high temperature low sag conductors. IET Generation, Transmission and Distribution, 2015, 9, 2311-2318.	1.4	15
34	Market Implications and Pricing of Dynamic Reserve Policies for Systems With Renewables. IEEE Transactions on Power Systems, 2015, 30, 1593-1602.	4.6	26
35	N-1 Reliable Unit Commitment via Progressive Hedging. Journal of Energy Engineering - ASCE, 2015, 141, .	1.0	7
36	Zonal do-not-exceed limits with robust corrective topology control. Electric Power Systems Research, 2015, 129, 235-242.	2.1	9

#	Article	IF	Citations
37	Iterative transmission and distribution optimal power flow framework for enhanced utilisation of distributed resources. IET Generation, Transmission and Distribution, 2015, 9, 1089-1095.	1.4	11
38	Market implications and pricing of dynamic reserve policies for systems with renewables. , 2015, , .		3
39	Wind Power Dispatch Margin for Flexible Energy and Reserve Scheduling With Increased Wind Generation. IEEE Transactions on Sustainable Energy, 2015, 6, 1543-1552.	5.9	63
40	Dynamic Reserve Zones for Day-Ahead Unit Commitment With Renewable Resources. IEEE Transactions on Power Systems, 2015, 30, 612-620.	4.6	61
41	Real-Time Corrective Switching in Response to Simultaneous Contingencies. Journal of Energy Engineering - ASCE, 2015, 141, .	1.0	15
42	The Role of Out-of-Market Corrections in Day-Ahead Scheduling. IEEE Transactions on Power Systems, 2015, 30, 1937-1946.	4.6	40
43	Locational Reserve Disqualification for Distinct Scenarios. IEEE Transactions on Power Systems, 2015, 30, 357-364.	4.6	22
44	Economic Assessment of Energy Storage in Systems With High Levels of Renewable Resources. IEEE Transactions on Sustainable Energy, 2015, 6, 1103-1111.	5.9	144
45	Performance of AC and DC based transmission switching heuristics on a large-scale polish system. , 2014, , .		13
46	Market implications of reliability unit commitment formulations for Day-Ahead scheduling. , 2014, , .		5
47	Reserve Requirements to Efficiently Manage Intra-Zonal Congestion. IEEE Transactions on Power Systems, 2014, 29, 251-258.	4.6	32
48	Joint transmission expansion planning and energy storage placement in smart grid towards efficient integration of renewable energy. , 2014, , .		12
49	Topology Control for Load Shed Recovery. IEEE Transactions on Power Systems, 2014, 29, 908-916.	4.6	55
50	Robust Corrective Topology Control for System Reliability. IEEE Transactions on Power Systems, 2013, 28, 4042-4051.	4.6	69
51	The effects of extended locational marginal pricing in wholesale electricity markets., 2013,,.		1
52	An application of high performance computing to transmission switching. , 2013, , .		15
53	An integrated transmission and distribution systems model with distribution-based LMP (DLMP) pricing. , $2013, , .$		10
54	Fictitious losses in the DCOPF with a piecewise linear approximation of losses. , 2013, , .		7

#	Article	IF	CITATIONS
55	Reserve zone determination based on statistical clustering methods. , 2012, , .		24
56	Electric Power and Energy Engineering: The First Century. Proceedings of the IEEE, 2012, 100, 1315-1328.	16.4	16
57	A review of transmission switching and network topology optimization. , 2011, , .		127
58	Smart Flexible Just-in-Time Transmission and Flowgate Bidding. IEEE Transactions on Power Systems, 2011, 26, 93-102.	4.6	50
59	Optimal transmission switching: economic efficiency and market implications. Journal of Regulatory Economics, 2011, 40, 111-140.	0.8	49
60	Economic analysis of the N-1 reliable unit commitment and transmission switching problem using duality concepts. Energy Systems, 2010, 1, 165-195.	1.8	119
61	Co-Optimization of Generation Unit Commitment and Transmission Switching With N-1 Reliability. IEEE Transactions on Power Systems, 2010, 25, 1052-1063.	4.6	327
62	Analyzing valid inequalities of the generation unit commitment problem. , 2009, , .		25
63	Optimal Transmission Switching With Contingency Analysis. IEEE Transactions on Power Systems, 2009, 24, 1577-1586.	4.6	344
64	Optimal Transmission Switching—Sensitivity Analysis and Extensions. IEEE Transactions on Power Systems, 2008, 23, 1469-1479.	4.6	179
65	A computational comparison of PTDF-based and phase-angle-based formulations of network constraints in distributed unit commitment. Energy Systems, 0 , 1 .	1.8	O