Francisco Pasadas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9092725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-Signal Model of Graphene Field-Effect Transistors—Part I: Compact Modeling of GFET Intrinsic Capacitances. IEEE Transactions on Electron Devices, 2016, 63, 2936-2941.	1.6	35
2	Large-Signal Model of Graphene Field- Effect Transistors—Part II: Circuit Performance Benchmarking. IEEE Transactions on Electron Devices, 2016, 63, 2942-2947.	1.6	24
3	Small-Signal Model for 2D-Material Based FETs Targeting Radio-Frequency Applications: The Importance of Considering Nonreciprocal Capacitances. IEEE Transactions on Electron Devices, 2017, 64, 4715-4723.	1.6	24
4	Compact Modeling Technology for the Simulation of Integrated Circuits Based on Graphene Fieldâ€Effect Transistors. Advanced Materials, 2022, 34, e2201691.	11.1	19
5	A Graphene Field-Effect Transistor Based Analogue Phase Shifter for High-Frequency Applications. IEEE Access, 2020, 8, 209055-209063.	2.6	17
6	Scaling of graphene field-effect transistors supported on hexagonal boron nitride: radio-frequency stability as a limiting factor. Nanotechnology, 2017, 28, 485203.	1.3	15
7	Large-signal model of 2DFETs: compact modeling of terminal charges and intrinsic capacitances. Npj 2D Materials and Applications, 2019, 3, .	3.9	15
8	Radio Frequency Performance Projection and Stability Tradeoff of h-BN Encapsulated Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2019, 66, 1567-1573.	1.6	12
9	Sensitivity analysis of a Graphene Field-Effect Transistors by means of Design of Experiments. Mathematics and Computers in Simulation, 2021, 183, 187-197.	2.4	11
10	GFET Asymmetric Transfer Response Analysis through Access Region Resistances. Nanomaterials, 2019, 9, 1027.	1.9	9
11	Non-Quasi-Static Effects in Graphene Field-Effect Transistors Under High-Frequency Operation. IEEE Transactions on Electron Devices, 2020, 67, 2188-2196.	1.6	7
12	Compact Modeling of pH-Sensitive FETs Based on 2-D Semiconductors. IEEE Transactions on Electron Devices, 2021, 68, 5916-5919.	1.6	7
13	Large-Signal Model of the Metal–Insulator–Graphene Diode Targeting RF Applications. IEEE Electron Device Letters, 2019, 40, 1005-1008.	2.2	6
14	Tolerance analysis of a GFET transistor for aerospace and aeronautical application. IOP Conference Series: Materials Science and Engineering, 2021, 1024, 012005.	0.3	5
15	Erratum to "Large-Signal Model of Graphene Field-Effect Transistors—Part I: Compact Modeling of GFET Intrinsic Capacitances―[Jul 16 2936-2941]. IEEE Transactions on Electron Devices, 2019, 66, 2459-2459.	1.6	4
16	Does carrier velocity saturation help to enhance <i>f</i> _{max} in graphene field-effect transistors?. Nanoscale Advances, 2020, 2, 4179-4186.	2.2	4
17	Multi-scale analysis of radio-frequency performance of 2D-material based field-effect transistors. Nanoscale Advances, 2021, 3, 2377-2382.	2.2	4
18	Unveiling the impact of the bias-dependent charge neutrality point on graphene based multi-transistor applications. Nano Express, 2021, 2, 036001.	1.2	4

#	Article	IF	CITATIONS
19	Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment. Journal of Applied Physics, 2015, 118, .	1.1	3
20	Device-to-circuit modeling approach to Metal – Insulator – 2D material FETs targeting the design of linear RF applications. , 2019, , .		1
21	Numerical study of surface chemical reactions in 2D-FET based pH sensors. , 2020, , .		0