
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9092712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SINAPs: A Software Tool for Analysis and Visualization of Interaction Networks of Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 1425-1436.	2.5	4
2	Combretastatin A-4 sulfur-containing heterocyclic derivatives: Synthesis, antiproliferative activities and molecular docking studies. European Journal of Medicinal Chemistry, 2021, 215, 113275.	2.6	7
3	Pyroglutamide-Based P2X7 Receptor Antagonists Targeting Inflammatory Bowel Disease. Journal of Medicinal Chemistry, 2020, 63, 2074-2094.	2.9	24
4	Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity. Bioorganic Chemistry, 2020, 103, 104184.	2.0	15
5	Enhanced antitumor potential induced by chloroacetate-loaded benzophenones acting as fused tubulin-pyruvate dehydrogenase kinase 1 (PDHK1) ligands. Bioorganic Chemistry, 2020, 96, 103643.	2.0	6
6	Ultrasounds-mediated 10-seconds synthesis of chalcones as potential farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127149.	1.0	8
7	Exploring isoxazoles and pyrrolidinones decorated with the 4,6â€dimethoxyâ€1,3,5â€triazine unit as human farnesyltransferase inhibitors. Archiv Der Pharmazie, 2019, 352, e1800227.	2.1	8
8	Synthesis and biological evaluation of ferrocene-based cannabinoid receptor 2 ligands. Future Medicinal Chemistry, 2018, 10, 631-638.	1.1	7
9	Toward the Discovery of a Novel Class of YAP–TEAD Interaction Inhibitors by Virtual Screening Approach Targeting YAP–TEAD Protein–Protein Interface. Cancers, 2018, 10, 140.	1.7	36
10	Anti-diabetic activity of fused PPARÎ ³ -SIRT1 ligands with limited body-weight gain by mimicking calorie restriction and decreasing SGK1 expression. European Journal of Medicinal Chemistry, 2017, 137, 310-326.	2.6	7
11	On the discovery of new potent human farnesyltransferase inhibitors: emerging pyroglutamic derivatives. Organic and Biomolecular Chemistry, 2017, 15, 8110-8118.	1.5	13
12	Studies on phenothiazines: New microtubule-interacting compounds with phenothiazine A-ring as potent antineoplastic agents. Bioorganic and Medicinal Chemistry, 2016, 24, 2307-2317.	1.4	23
13	Methylene versus carbonyl bridge in the structure of new tubulin polymerization inhibitors with tricyclic A-rings. Bioorganic and Medicinal Chemistry, 2016, 24, 6021-6030.	1.4	6
14	New indolizine–chalcones as potent inhibitors of human farnesyltransferase: Design, synthesis and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3730-3734.	1.0	29
15	Synthesis and biological evaluation of thiophene and benzo[b]thiophene analogs of combretastatin A-4 and isocombretastatin A-4: A comparison between the linkage positions of the 3,4,5-trimethoxystyrene unit. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 174-180.	1.0	22
16	Docking study: PPARs interaction with the selected alternative plasticizers to di(2-ethylhexyl) phthalate. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 31, 1-8.	2.5	14
17	Phenothiazine-based CaaX competitive inhibitors of human farnesyltransferase bearing a cysteine, methionine, serine or valine moiety as a new family of antitumoral compounds. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4447-4452.	1.0	9
18	Studies on indolizines. Evaluation of their biological properties as microtubule-interacting agents and as melanoma targeting compounds. European Journal of Medicinal Chemistry, 2015, 89, 115-127.	2.6	40

#	Article	IF	CITATIONS
19	Relationships between Th1 or Th2 iNKT Cell Activity and Structures of CD1d-Antigen Complexes: Meta-analysis of CD1d-Glycolipids Dynamics Simulations. PLoS Computational Biology, 2014, 10, e1003902.	1.5	5
20	Unexpected Heteroannulation and Chlorination of Benzothiadiazine Derivatives Mediated by DDQ. Synthesis, 2014, 46, 235-241.	1.2	2
21	Peptide chemistry applied to a new family of phenothiazine-containing inhibitors of human farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3180-3185.	1.0	12
22	NMR studies of interactions of new CB2 cannabinoid receptor ligands with cyclodextrins hosts. Correlation with micellar electrokinetic chromatography and reversed phase high performance liquid chromatography. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 265-274.	0.9	0
23	Novel indolizine derivatives with unprecedented inhibitory activity on human farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5777-5781.	1.0	23
24	Switching Invariant Natural Killer T (iNKT) Cell Response from Anticancerous to Anti-Inflammatory Effect: Molecular Bases. Journal of Medicinal Chemistry, 2014, 57, 5489-5508.	2.9	62
25	Synthesis and biological evaluation of a new series of phenothiazine-containing protein farnesyltransferase inhibitors. European Journal of Medicinal Chemistry, 2013, 59, 101-110.	2.6	22
26	Synthesis, antiproliferative activity and tubulin targeting effect of acridinone andÂdioxophenothiazine derivatives. European Journal of Medicinal Chemistry, 2013, 59, 39-47.	2.6	21
27	On the synthesis and biological properties of isocombretastatins: a case of ketone homologation during Wittig reaction attempts. RSC Advances, 2013, 3, 3683.	1.7	6
28	Synthesis and anticancer activity of analogues of phenstatin, with a phenothiazine A-ring, as a new class of microtubule-targeting agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 147-152.	1.0	32
29	Synthesis and biological evaluation of a new series of N-ylides as protein farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5887-5892.	1.0	12
30	Synthesis and biological evaluation of fluoro analogues of antimitotic phenstatin. Bioorganic and Medicinal Chemistry, 2013, 21, 2932-2940.	1.4	29
31	Virtual Screening of CB ₂ Receptor Agonists from Bayesian Network and Highâ€Throughput Docking: Structural Insights into Agonistâ€Modulated GPCR Features. Chemical Biology and Drug Design, 2013, 81, 442-454.	1.5	19
32	Antioxidant Activity of New Benzo[de]quinolines and Lactams: 2DQuantitative Structure-Activity Relationships. Medicinal Chemistry, 2012, 8, 942-946.	0.7	5
33	Effect of Oxime Ether Incorporation in Acyl Indole Derivatives on PPAR Subtype Selectivity. ChemMedChem, 2012, 7, 2179-2193.	1.6	13
34	Synthesis and biological evaluation of new phenothiazine derivatives bearing a pyrazole unit as protein farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6896-6902.	1.0	20
35	Discovery of ferrocene-containing farnesyltransferase inhibitors. Investigation of bulky lipophilic groups for the A2 binding site of farnesyltransferase. MedChemComm, 2012, 3, 1147.	3.5	9
36	New farnesyltransferase inhibitors in the phenothiazine series. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4517-4522.	1.0	32

#	Article	IF	CITATIONS
37	Synthesis and Structure–Activity Relationships of (Aryloxy)quinazoline Ureas as Novel, Potent, and Selective Vascular Endothelial Growth Factor Receptor-2 Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 1189-1204.	2.9	55
38	Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of Modulators. Journal of Medicinal Chemistry, 2012, 55, 4027-4061.	2.9	160
39	Potent Farnesyltransferase Inhibitors with 1,4-Diazepane Scaffolds as Novel Destabilizing Microtubule Agents in Hormone-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2011, 54, 1178-1190.	2.9	16
40	[4-(6,7-Disubstituted quinazolin-4-ylamino)phenyl] carbamic acid esters: a novel series of dual EGFR/VEGFR-2 tyrosine kinase inhibitors. MedChemComm, 2011, 2, 65-72.	3.5	48
41	Genetic polymorphism of CYP4A11 and CYP4A22 genes and in silico insights from comparative 3D modelling in a French population. Gene, 2011, 487, 10-20.	1.0	15
42	Impact of aryloxy-linked quinazolines: A novel series of selective VEGFR-2 receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2106-2112.	1.0	64
43	Design and synthesis of naphthalenic derivatives as new ligands at the melatonin binding site MT3. European Journal of Medicinal Chemistry, 2011, 46, 1622-1629.	2.6	14
44	In Vitro Metabolism of Phenstatin: Potential Pharmacological Consequences. Drug Metabolism Letters, 2011, 5, 209-215.	0.5	10
45	Homology Modeling of 5-HT2C Receptors. , 2011, , 97-127.		0
46	Synthesis, biological evaluation and docking studies of 4-amino-tetrahydroquinazolino[3,2-e]purine derivatives. European Journal of Medicinal Chemistry, 2010, 45, 5678-5684.	2.6	7
47	Novel structural insights for drug design of selective 5-HT2C inverse agonists from a ligand-biased receptor model. European Journal of Medicinal Chemistry, 2010, 45, 5086-5099.	2.6	8
48	Quinazoline-urea, new protein kinase inhibitors in treatment of prostate cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 158-171.	2.5	21
49	Structural Insight into PPARγ Ligands Binding. Current Medicinal Chemistry, 2009, 16, 1768-1789.	1.2	46
50	2,6-Diphenylthiazolo[3,2-b][1,2,4]triazoles as telomeric G-quadruplex stabilizers. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3434-3438.	1.0	25
51	Homology modeling of MT1 and MT2 receptors. European Journal of Medicinal Chemistry, 2008, 43, 1926-1944.	2.6	23
52	Molecular modelling of phthalates – PPARs interactions. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 611-616.	2.5	25
53	Synthesis and Radioligand Binding Studies of Bis-isoquinolinium Derivatives as Small Conductance Ca ²⁺ -Activated K ⁺ Channel Blockers. Journal of Medicinal Chemistry, 2007, 50, 5070-5075.	2.9	27
54	Quantitative structure-activity relationships studies of antioxidant hexahydropyridoindoles and flavonoid derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 556-562.	2.5	12

#	Article	IF	CITATIONS
55	Derivatives of Iressa, a Specific Epidermal Growth Factor Receptor Inhibitor, are Powerful Apoptosis Inducers in PC3 Prostatic Cancer Cells. ChemMedChem, 2007, 2, 318-332.	1.6	13
56	Design, synthesis and biological evaluation of substituted dioxodibenzothiazepines and dibenzocycloheptanes as farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5465-5471.	1.0	31
57	Three-Dimensional Quantitative Structure–Activity Relationship ofMT3 Melatonin Binding Site Ligands: A Comparative Molecular Field Analysis. QSAR and Combinatorial Science, 2007, 26, 820-827.	1.5	3
58	Differences in Binding Sites of Two Melatonin Receptors Help to Explain Their Selectivity to Some Melatonin Analogs: A Molecular Modeling Study. Journal of Biomolecular Structure and Dynamics, 2006, 24, 91-107.	2.0	16
59	Novel 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New CB2Cannabinoid Receptors Agonists:Â Synthesis, Pharmacological Properties and Molecular Modeling. Journal of Medicinal Chemistry, 2006, 49, 70-79.	2.9	81
60	Synthesis of a novel conformationally restricted Val-Phe dipeptidomimetic. Journal of Peptide Science, 2006, 12, 140-146.	0.8	6
61	Solid-phase synthesis andÂpharmacological evaluation ofÂaÂlibrary ofÂpeptidomimetics asÂpotential farnesyltransferase inhibitors: anÂapproach toÂnew lead compounds. European Journal of Medicinal Chemistry, 2006, 41, 745-755.	2.6	16
62	Novel 1,3-dicarbonyl compounds having 2(3H)-benzazolonic heterocycles as PPARÎ ³ agonists. Bioorganic and Medicinal Chemistry, 2006, 14, 7377-7391.	1.4	18
63	A Computational View of COX-2 Inhibition. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 239-249.	0.9	1
64	Homology modelling of the serotoninergic 5-HT2c receptor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 285-292.	2.5	10
65	Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. Journal of Experimental Medicine, 2005, 201, 1205-1215.	4.2	428
66	Identification of a pharmacophore of SKCa channel blockers. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 517-523.	2.5	19
67	Docking Study of Ligands into the Colchicine Binding Site of Tubulin. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 541-547.	2.5	36