
Paul Thorsten Nürnberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9092268/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 2022, 20, 449-464.	28.6	129
2	Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nature Communications, 2022, 13, 1294.	12.8	20
3	An oomycete NLP cytolysin forms transient small pores in lipid membranes. Science Advances, 2022, 8, eabj9406.	10.3	11
4	Cytotoxic activity of Nep1â€like proteins on monocots. New Phytologist, 2022, 235, 690-700.	7.3	9
5	Plant immunity unified. Nature Plants, 2021, 7, 382-383.	9.3	49
6	The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nature Plants, 2021, 7, 579-586.	9.3	172
7	Nep1-like proteins as a target for plant pathogen control. PLoS Pathogens, 2021, 17, e1009477.	4.7	9
8	Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae. Nature Plants, 2021, 7, 1254-1263.	9.3	40
9	The <i>Arabidopsis thaliana</i> LysMâ€containing Receptorâ€Like Kinase 2 is required for elicitorâ€induced resistance to pathogens. Plant, Cell and Environment, 2021, 44, 3775-3792.	5.7	22
10	The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature, 2021, 598, 495-499.	27.8	223
11	The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications, 2020, 11, 5299.	12.8	36
12	ABA-Dependent Salt Stress Tolerance Attenuates Botrytis Immunity in Arabidopsis. Frontiers in Plant Science, 2020, 11, 594827.	3.6	11
13	A plant surface receptor for sensing insect herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32839-32841.	7.1	4
14	Surface Sensor Systems in Plant Immunity. Plant Physiology, 2020, 182, 1582-1596.	4.8	140
15	A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis. PLoS Pathogens, 2019, 15, e1007747.	4.7	37
16	Structure-Function Analysis of Immune Receptor <i>At</i> RLP23 with Its Ligand nlp20 and Coreceptors <i>At</i> SOBIR1 and <i>At</i> BAK1. Molecular Plant-Microbe Interactions, 2019, 32, 1038-1046.	2.6	34
17	Molecular basis for functional diversity among microbial Nep1-like proteins. PLoS Pathogens, 2019, 15, e1007951.	4.7	39
18	Plant cell surface immune receptor complex signaling. Current Opinion in Plant Biology, 2019, 50, 18-28.	7.1	75

#	Article	IF	CITATIONS
19	Comparing Arabidopsis receptor kinase and receptor proteinâ€mediated immune signaling reveals BIK1â€dependent differences. New Phytologist, 2019, 221, 2080-2095.	7.3	73
20	The fungal ligand chitin directly binds <scp>TLR</scp> 2 and triggers inflammation dependent on oligomer size. EMBO Reports, 2018, 19, .	4.5	75
21	The <i>Verticillium</i> â€specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytologist, 2017, 215, 368-381.	7.3	130
22	Sensing Danger: Key to Activating Plant Immunity. Trends in Plant Science, 2017, 22, 779-791.	8.8	300
23	Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science, 2017, 358, 1431-1434.	12.6	167
24	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
25	An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature Plants, 2015, 1, 15140.	9.3	373
26	A Conserved Peptide Pattern from a Widespread Microbial Virulence Factor Triggers Pattern-Induced Immunity in Arabidopsis. PLoS Pathogens, 2014, 10, e1004491.	4.7	166
27	Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16955-16960.	7.1	189
28	The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity. Current Biology, 2014, 24, 134-143.	3.9	219
29	A novel <scp>A</scp> rabidopsis <scp>CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1)</scp> mutant with enhanced pathogenâ€induced cell death and altered receptor processing. New Phytologist, 2014, 204, 955-967.	7.3	55
30	Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology, 2014, 20, 47-54.	7.1	227
31	Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis. ELife, 2014, 3, .	6.0	61
32	Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science, 2012, 17, 495-502.	8.8	189
33	<i>Arabidopsis</i> lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19824-19829.	7.1	442
34	Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant Cell, 2011, 23, 4-15.	6.6	896
35	Biotechnological concepts for improving plant innate immunity. Current Opinion in Biotechnology, 2010, 21, 204-210.	6.6	93
36	A common toxin fold mediates microbial attack and plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10359-10364.	7.1	224

#	Article	IF	CITATIONS
37	Bacterial Effectors Target the Common Signaling Partner BAK1 to Disrupt Multiple MAMP Receptor-Signaling Complexes and Impede Plant Immunity. Cell Host and Microbe, 2008, 4, 17-27.	11.0	498
38	Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins. Plant Cell, 2007, 18, 3721-3744.	6.6	314
39	A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448, 497-500.	27.8	1,619
40	Nep1-like proteins from plant pathogens: Recruitment and diversification of the NPP1 domain across taxa. Phytochemistry, 2006, 67, 1800-1807.	2.9	312
41	Receptor-Mediated Increase in Cytoplasmic Free Calcium Required for Activation of Pathogen Defense in Parsley. Plant Cell, 2000, 12, 1425-1440.	6.6	389