
## Alessandro Pozzebon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9092212/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.<br>Sensors, 2018, 18, 1282.                                                                           | 3.8  | 107       |
| 2  | A Multi-Hop LoRa Linear Sensor Network for the Monitoring of Underground Environments: The Case of the Medieval Aqueducts in Siena, Italy. Sensors, 2019, 19, 402.                               | 3.8  | 74        |
| 3  | A Low-Cost Unmanned Surface Vehicle for Pervasive Water Quality Monitoring. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1433-1444.                                           | 4.7  | 55        |
| 4  | Quartz-Crystal Microbalance Gas Sensors Based on TiO <sub>2</sub> Nanoparticles. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 722-730.                                        | 4.7  | 52        |
| 5  | A Biochemical Approach to Detect Oxidative Stress in Infertile Women Undergoing Assisted<br>Reproductive Technology Procedures. International Journal of Molecular Sciences, 2018, 19, 592.      | 4.1  | 39        |
| 6  | Low Power Wide Area Networks (LPWAN) at Sea: Performance Analysis of Offshore Data Transmission<br>by Means of LoRaWAN Connectivity for Marine Monitoring Applications. Sensors, 2019, 19, 3239. | 3.8  | 38        |
| 7  | A city-scale IoT architecture for monumental structures monitoring. Measurement: Journal of the International Measurement Confederation, 2019, 131, 349-357.                                     | 5.0  | 38        |
| 8  | Radio Frequency Identification (RFID) technology applied to the definition of underwater and subaerial coarse sediment movement. Sedimentary Geology, 2010, 228, 140-150.                        | 2.1  | 37        |
| 9  | LoRaWAN Versus NB-IoT: Transmission Performance Analysis Within Critical Environments. IEEE<br>Internet of Things Journal, 2022, 9, 1068-1081.                                                   | 8.7  | 33        |
| 10 | Universal characteristics of particle shape evolution by bed-load chipping. Science Advances, 2018, 4,<br>eaao4946.                                                                              | 10.3 | 32        |
| 11 | A Review of Energy Harvesting Techniques for Low Power Wide Area Networks (LPWANs). Energies, 2020, 13, 3433.                                                                                    | 3.1  | 31        |
| 12 | Short term displacements of marked pebbles in the swash zone: Focus on particle shape and size.<br>Marine Geology, 2015, 367, 143-158.                                                           | 2.1  | 27        |
| 13 | A 3D virtual tour of the Santa Maria della Scala Museum Complex in Siena, Italy, based on the use of<br>Oculus Rift HMD. , 2015, , .                                                             |      | 26        |
| 14 | Battery-Less HF RFID Sensor Tag for Soil Moisture Measurements. IEEE Transactions on<br>Instrumentation and Measurement, 2021, 70, 1-13.                                                         | 4.7  | 26        |
| 15 | A Multi-Layer LoRaWAN Infrastructure for Smart Waste Management. Sensors, 2021, 21, 2600.                                                                                                        | 3.8  | 26        |
| 16 | On the displacement of marked pebbles on two coarse-clastic beaches during short fair-weather periods (Marina di Pisa and Portonovo, Italy). Geo-Marine Letters, 2013, 33, 463-476.              | 1.1  | 25        |
| 17 | Impressive abrasion rates of marked pebbles on a coarse-clastic beach within a 13-month timespan.<br>Marine Geology, 2016, 381, 175-180.                                                         | 2.1  | 25        |
| 18 | LoRaWAN Underground to Aboveground Data Transmission Performances for Different Soil<br>Compositions. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.                      | 4.7  | 23        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An RFID-Based Toolbox for the Study of Under- and Outside-Water Movement of Pebbles on<br>Coarse-Grained Beaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote<br>Sensing, 2012, 5, 1474-1482. | 4.9 | 22        |
| 20 | Measurement of Angular Vibrations in Rotating Shafts: Effects of the Measurement Setup<br>Nonidealities. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 532-543.                                          | 4.7 | 22        |
| 21 | A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on<br>Sandy Beaches and Dunes. Sensors, 2018, 18, 820.                                                                            | 3.8 | 21        |
| 22 | Offshore LoRaWAN Networking: Transmission Performances Analysis Under Different Environmental Conditions. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.                                            | 4.7 | 20        |
| 23 | Influence of particle shape on pebble transport in a mixed sand and gravel beach during low energy conditions: Implications for nourishment projects. Ocean and Coastal Management, 2019, 169, 171-181.                    | 4.4 | 19        |
| 24 | A LoRaWAN Network Infrastructure for the Remote Monitoring of Offshore Sea Farms. , 2020, , .                                                                                                                              |     | 19        |
| 25 | An IoT Framework for the Pervasive Monitoring of Chemical Emissions in Industrial Plants. , 2018, , .                                                                                                                      |     | 18        |
| 26 | An RFID Based System for the Underwater Tracking of Pebbles on Artificial Coarse Beaches. , 2009, , .                                                                                                                      |     | 16        |
| 27 | A LoRa-based IoT Sensor Node for Waste Management Based on a Customized Ultrasonic Transceiver. , 2019, , .                                                                                                                |     | 16        |
| 28 | Augmented Virtuality for Coastal Management: A Holistic Use of In Situ and Remote Sensing for Large<br>Scale Definition of Coastal Dynamics. ISPRS International Journal of Geo-Information, 2018, 7, 92.                  | 2.9 | 14        |
| 29 | An analysis on the use of LF RFID for the tracking of different typologies of pebbles on beaches. , 2011, ,                                                                                                                |     | 13        |
| 30 | Availability modeling of a safe communication system for rolling stock applications. , 2013, , .                                                                                                                           |     | 13        |
| 31 | Interoperability among Sub-GHz Technologies for Metallic Assets Tracking and Monitoring. , 2020, , .                                                                                                                       |     | 13        |
| 32 | LoRaWAN Performances for Underground to Aboveground Data Transmission. , 2020, , .                                                                                                                                         |     | 13        |
| 33 | A wearable Low-cost Measurement System for Estimation of Human Exposure to Vibrations. , 2019, , .                                                                                                                         |     | 12        |
| 34 | On the safety design of radar based railway level crossing surveillance systems. Acta IMEKO (2012),<br>2016, 5, 64.                                                                                                        | 0.7 | 12        |
| 35 | Designing a Reliable and Low-Latency LoRaWAN Solution for Environmental Monitoring in Factories at Major Accident Risk. Sensors, 2022, 22, 2372.                                                                           | 3.8 | 12        |
| 36 | Bringing near field communication under water: short range data exchange in fresh and salt water. ,<br>2015, , .                                                                                                           |     | 11        |

Alessandro Pozzebon

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Architecture of a hydroelectrically powered wireless sensor node for underground environmental monitoring. IET Wireless Sensor Systems, 2017, 7, 123-129.                                 | 1.7 | 11        |
| 38 | A Characterization System for Bearing Condition Monitoring Sensors, a Case Study with a Low Power Wireless Triaxial MEMS Based Sensor. , 2020, , .                                        |     | 11        |
| 39 | Combining LoRaWAN and NB-IoT for Edge-to-Cloud Low Power Connectivity Leveraging on Fog<br>Computing. Applied Sciences (Switzerland), 2022, 12, 1497.                                     | 2.5 | 11        |
| 40 | Black Powder Flow Monitoring in Pipelines by Means of Multi-Hop LoRa Networks. , 2019, , .                                                                                                |     | 10        |
| 41 | Smart Sensing in Mobility: a LoRaWAN Architecture for Pervasive Environmental Monitoring. , 2019, , .                                                                                     |     | 10        |
| 42 | Distributed UPS control systems reliability analysis. Measurement: Journal of the International Measurement Confederation, 2017, 110, 275-283.                                            | 5.0 | 9         |
| 43 | A Wireless Sensor Network Framework for Real-Time Monitoring of Height and Volume Variations on<br>Sandy Beaches and Dunes. ISPRS International Journal of Geo-Information, 2018, 7, 141. | 2.9 | 9         |
| 44 | Quasi-Real Time Remote Video Surveillance Unit for LoRaWAN-based Image Transmission. , 2021, , .                                                                                          |     | 9         |
| 45 | A low power IoT architecture for the monitoring of chemical emissions. Acta IMEKO (2012), 2019, 8, 53.                                                                                    | 0.7 | 9         |
| 46 | LoPATraN: Low Power Asset Tracking by Means of Narrow Band IoT (NB-IoT) Technology. Sensors, 2021, 21, 3772.                                                                              | 3.8 | 8         |
| 47 | IoT Multi-Hop Facilities via LoRa Modulation and LoRa WanProtocol within Thin Linear Networks. , 2021, , .                                                                                |     | 8         |
| 48 | Lowâ€cost power gating solution to increase energy efficiency optimising duty cycling in wireless sensor nodes with powerâ€hungry sensors. IET Wireless Sensor Systems, 2019, 9, 25-31.   | 1.7 | 7         |
| 49 | LoRaWAN in Motion: Preliminary Tests for Real Time Low Power Data Gathering from Vehicles. , 2021, , .                                                                                    |     | 7         |
| 50 | Providing Energy Self-Sufficiency to LoRaWAN Nodes by Means of Thermoelectric Generators<br>(TEGs)-Based Energy Harvesting. Energies, 2021, 14, 7322.                                     | 3.1 | 7         |
| 51 | Autonomous IoT Monitoring Matching Spectral Artificial Light Manipulation for Horticulture.<br>Sensors, 2022, 22, 4046.                                                                   | 3.8 | 7         |
| 52 | An Analysis of the Performances of Low Frequency Cylinder Glass Tags for the Underwater Tracking of Pebbles on a Natural Beach. , 2012, , .                                               |     | 6         |
| 53 | Performance Analysis of an AlN Humidity Sensor based on TiO <sub>2</sub> nanoparticles. , 2019, , .                                                                                       |     | 6         |
| 54 | Using the I2C bus to set up Long Range Wired Sensor and Actuator Networks in Smart Buildings. , 2019, , .                                                                                 |     | 6         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Target measurements influence on level crossing detection system safety determination.<br>Measurement: Journal of the International Measurement Confederation, 2019, 135, 547-554.                                   | 5.0 | 6         |
| 56 | A LoRaWAN Carbon Monoxide Measurement System With Low-Power Sensor Triggering for the<br>Monitoring of Domestic and Industrial Boilers. IEEE Transactions on Instrumentation and<br>Measurement, 2021, 70, 1-9.      | 4.7 | 6         |
| 57 | The Effect of Au Nanoparticle Addition on Humidity Sensing with Ultra-Small TiO2 Nanoparticles.<br>Chemosensors, 2021, 9, 170.                                                                                       | 3.6 | 6         |
| 58 | Near Field Communication and Health: Turning a Mobile Phone into an Interactive Multipurpose<br>Assistant in Healthcare Scenarios. Communications in Computer and Information Science, 2010, ,<br>356-368.           | 0.5 | 6         |
| 59 | Underwater to above water LoRaWAN networking: Theoretical analysis and field tests. Measurement:<br>Journal of the International Measurement Confederation, 2022, 196, 111140.                                       | 5.0 | 6         |
| 60 | Possible configurations and geometries of long range HF RFID antenna gates. , 2009, , .                                                                                                                              |     | 5         |
| 61 | Heterogeneous Wireless Sensor Network for Real Time Remote Monitoring of Sand Dynamics on<br>Coastal Dunes. IOP Conference Series: Earth and Environmental Science, 2016, 44, 042030.                                | 0.3 | 5         |
| 62 | A geometrical approach for the measurement of the volume of masses of granular material through grid-layout sensor networks. Measurement: Journal of the International Measurement Confederation, 2020, 151, 107102. | 5.0 | 5         |
| 63 | LoRaWAN Transmission System Capability Assessment in Industrial Environment Under Temperature and Humidity Characterization. , 2021, , .                                                                             |     | 5         |
| 64 | Assessment of LoRaWAN Transmission Systems Under Temperature and Humidity, Gas, and Vibration<br>Aging Effects Within IIoT Contexts. IEEE Transactions on Instrumentation and Measurement, 2022, 71,<br>1-11.        | 4.7 | 5         |
| 65 | Integrating RFID Transponders as Data Loggers in Wireless Sensor Nodes for Outdoor Remote<br>Monitoring Operations. International Journal of Wireless Information Networks, 2015, 22, 399-406.                       | 2.7 | 4         |
| 66 | Smart devices for Intangible Cultural Heritage fruition. , 2015, , .                                                                                                                                                 |     | 3         |
| 67 | An Integrated System for Real-Time Water Monitoring Based on Low Cost Unmanned Surface Vehicles. , 2019, , .                                                                                                         |     | 3         |
| 68 | Magnetic brakes material characterization under accelerated testing conditions. Reliability<br>Engineering and System Safety, 2020, 193, 106614.                                                                     | 8.9 | 3         |
| 69 | Pilot Analysis on Soil Moisture Impact on Underground to Aboveground LoRaWAN Transmissions for IoUT Contexts. , 2021, , .                                                                                            |     | 3         |
| 70 | Development of a Self-Sufficient LoRaWAN Sensor Node with Flexible and Glass Dye-Sensitized Solar<br>Cell Modules Harvesting Energy from Diffuse Low-Intensity Solar Radiation. Energies, 2022, 15, 1635.            | 3.1 | 3         |
| 71 | A wireless waterproof RFID reader for marine sediment localization and tracking. , 2014, , .                                                                                                                         |     | 2         |
| 72 | Places Speaking with Their Own Voices. A Case Study from the Gra.fo Archives. Lecture Notes in Computer Science, 2016, , 232-239.                                                                                    | 1.3 | 2         |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Target measurements influence on level crossing detection system safety assessment. , 2017, , .                                                                                        |     | 2         |
| 74 | The PITAGORA project: Near field communication to improve passenger experience in airports. , 2017, , .                                                                                |     | 2         |
| 75 | Solar energy harvesting for LoRaWAN-based pervasive environmental monitoring. Acta IMEKO (2012), 2021, 10, 111.                                                                        | 0.7 | 2         |
| 76 | Vulnerability Assessment of a Coastal Dune System at São Francisco do Sul Island, Santa Catarina,<br>Brazil. IOP Conference Series: Earth and Environmental Science, 2016, 44, 052028. | 0.3 | 1         |
| 77 | Watermill principle applied to energy harvesting for sensor nodes in underground environments. , 2016, , .                                                                             |     | 1         |
| 78 | Data Transmission from ATEX Boxes by Means of LoRa Technology for Industrial Internet of Things<br>(IIoT) Applications. , 2021, , .                                                    |     | 1         |
| 79 | Condition Monitoring with LoRaWAN: Preliminary Tests on Gas Turbine Exciters. , 2021, , .                                                                                              |     | 1         |
| 80 | Polycrystalline silicon photovoltaic harvesting for indoor IoT systems under red- far red artificial<br>light. , 2021, , .                                                             |     | 1         |
| 81 | Pervasive Wireless Sensor Networks for the Monitoring of Large Monumental Structures: The Case of the Ancient City Walls of Siena. Lecture Notes in Computer Science, 2016, , 669-678. | 1.3 | 1         |
| 82 | Project and Realization of a Wide-Range High-Frequency RFID Gate Allowing Omnidirectional Detection of Transponders. ISRN Communications and Networking, 2012, 2012, 1-11.             | 0.5 | 1         |
| 83 | Exploiting Agriculture as an Intangible Cultural Heritage: The Case of the Farfalla Project. Lecture<br>Notes in Computer Science, 2016, , 130-137.                                    | 1.3 | Ο         |
| 84 | Madmenâ $\in$ Ms Voices: Discovering Former Psychiatric Hospitals via Mobile Application. , 2018, , .                                                                                  |     | 0         |
| 85 | Long Range (LoRa) Transmission Through Ice: Preliminary Results. , 2021, , .                                                                                                           |     | 0         |
| 86 | Health monitoring and wellness for all, a multichannel approach through innovative interfaces and systems. , 2012, , .                                                                 |     | 0         |