
Armagan Karamanli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9091655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Free vibration of axially loaded zigzag and armchair nanobeams using doublet mechanics. Mechanics Based Design of Structures and Machines, 2023, 51, 5808-5833.	3.4	1
2	Finite element formulation of metal foam microbeams via modified strain gradient theory. Engineering With Computers, 2023, 39, 751-772.	3.5	9
3	Finite element model for free vibration analysis of curved zigzag nanobeams. Composite Structures, 2022, 282, 115097.	3.1	8
4	Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter. Applied Mathematical Modelling, 2021, 91, 723-748.	2.2	30
5	A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Composite Structures, 2021, 257, 113066.	3.1	16
6	Size-dependent behaviors of three directional functionally graded shear and normal deformable imperfect microplates. Composite Structures, 2021, 257, 113076.	3.1	19
7	A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model. Aerospace Science and Technology, 2021, 111, 106550.	2.5	37
8	Vibration behaviors of two-directional carbon nanotube reinforced functionally graded composite plates. Composite Structures, 2021, 262, 113639.	3.1	11
9	Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams. Composite Structures, 2021, 264, 113739.	3.1	20
10	Structural behaviours of zigzag and armchair nanobeams using finite element doublet mechanics. European Journal of Mechanics, A/Solids, 2021, 89, 104287.	2.1	11
11	Radial basis Taylor series method and its applications. Engineering Computations, 2021, 38, 2354-2393.	0.7	2
12	Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mechanics Based Design of Structures and Machines, 2020, 48, 164-191.	3.4	37
13	Free vibration and buckling analysis of laminated composites and sandwich microbeams using a transverse shear-normal deformable beam theory. JVC/Journal of Vibration and Control, 2020, 26, 214-228.	1.5	13
14	Vibration of functionally graded shear and normal deformable porous microplates via finite element method. Composite Structures, 2020, 237, 111934.	3.1	21
15	Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Composite Structures, 2020, 246, 112401.	3.1	43
16	Bifurcation buckling conditions of FGM plates with different boundaries. Composite Structures, 2020, 245, 112325.	3.1	6
17	Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory. International Journal of Mechanical Sciences, 2019, 159, 165-181.	3.6	32
18	On the vibration of size dependent rotating laminated composite and sandwich microbeams via a transverse shear-normal deformation theory. Composite Structures, 2019, 216, 290-300	3.1	17

ARMAGAN KARAMANLI

#	Article	IF	CITATIONS
19	Buckling of laminated composite and sandwich beams due to axially varying in-plane loads. Composite Structures, 2019, 210, 391-408.	3.1	34
20	Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory. Composite Structures, 2018, 189, 127-136.	3.1	70
21	Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method. Composites Part B: Engineering, 2018, 144, 171-183.	5.9	60
22	Analytical Solutions for Buckling Behavior of Two Directional Functionally Graded Beams Using a Third Order Shear Deformable Beam Theory. Academic Platform Journal of Engineering and Science, 2018, 6, 164-178.	0.5	4
23	Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory. Composite Structures, 2017, 174, 70-86.	3.1	100
24	Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory. Composite Structures, 2017, 176, 388-397.	3.1	42
25	Elastostatic analysis of two-directional functionally graded beams using various beam theories and Symmetric Smoothed Particle Hydrodynamics method. Composite Structures, 2017, 160, 653-669.	3.1	43
26	Flexure Analysis of Laminated Composite and Sandwich Beams Using Timoshenko Beam Theory. Journal of Polytechnic, 0, , .	0.4	1
27	Bending Analysis of Two Directional Functionally Graded Beams Using A Four-Unknown Shear and Normal Deformation Theory. Journal of Polytechnic, 0, , .	0.4	1
28	Free Vibration and Buckling Analysis of Two Directional Functionally Graded Beams Using a Four-Unknown Shear and Normal Deformable Beam Theory. Anadolu University Journal of Sciences & Technology, 0, , 1-1.	0.2	5