Denis Loustau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9091534/publications.pdf

Version: 2024-02-01

44444 39744 18,444 99 50 98 citations h-index g-index papers 110 110 110 17993 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Environmental control of land-atmosphere CO ₂ fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1784689.	0.8	4
2	The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society, 2022, 103, E855-E872.	1.7	44
3	Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Global Change Biology, 2022, 28, 2111-2123.	4.2	23
4	Quantifying canopy conductance in a pine forest during drought from combined sap flow and canopy surface temperature measurements. Agricultural and Forest Meteorology, 2022, 323, 108997.	1.9	6
5	Method comparison of indirect assessments of understory leaf area index (LAIu): A case study across the extended network of ICOS forest ecosystem sites in Europe. Ecological Indicators, 2021, 128, 107841.	2.6	12
6	Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences, 2021, 18, 621-635.	1.3	12
7	DynACof: A process-based model to study growth, yield and ecosystem services of coffee agroforestry systems. Environmental Modelling and Software, 2020, 124, 104609.	1.9	26
8	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
9	Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190524.	1.8	35
10	Carbonâ \in "nitrogen interactions in European forests and semi-natural vegetation â \in " Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 2020, 17, 1583-1620.	1.3	21
11	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences, 2020, 17, 1621-1654.	1.3	18
12	The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 2020, 12, 1295-1320.	3.7	33
13	Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0. Geoscientific Model Development, 2020, 13, 5973-6009.	1.3	6
14	Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems $\hat{a} \in A$ case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France). Science of the Total Environment, 2019, 661, 613-629.	3.9	14
15	Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model. Agricultural and Forest Meteorology, 2018, 253-254, 203-217.	1.9	24
16	The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France. Remote Sensing, 2018, 10, 1839.	1.8	20
17	The Aqui Network: Soil Moisture Sites in the "Les Landes―Forest and Graves Vineyards (Bordeaux) Tj ETQq1	1 0.78431	14 rgBT /Over
18	Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest. Biogeosciences, 2018, 15, 669-691.	1.3	23

#	Article	IF	CITATIONS
19	Modelling the nutrient cost of biomass harvesting under different silvicultural and climate scenarios in production forests. Forest Ecology and Management, 2018, 429, 642-653.	1.4	12
20	ICOS eddy covariance flux-station site setup: a review. International Agrophysics, 2018, 32, 471-494.	0.7	59
21	Soil sampling and preparation for monitoring soil carbon. International Agrophysics, 2018, 32, 633-643.	0.7	12
22	Ancillary vegetation measurements at ICOS ecosystem stations. International Agrophysics, 2018, 32, 645-664.	0.7	35
23	Sampling and collecting foliage elements for the determination of the foliar nutrients in ICOS ecosystem stations. International Agrophysics, 2018, 32, 665-676.	0.7	4
24	Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nature Ecology and Evolution, 2017, 1, 48.	3.4	85
25	Dimensioning IRGA gas sampling systems: laboratory and field experiments. Atmospheric Measurement Techniques, 2016, 9, 1361-1367.	1.2	15
26	Evaluating the performance of land surface model ORCHIDEE-CANÂv1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme. Geoscientific Model Development, 2016, 9, 2951-2972.	1.3	43
27	Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry, 2016, 131, 173-202.	1.7	75
28	Tamm Review: Light use efficiency and carbon storage in nutrient and water experiments on major forest plantation species. Forest Ecology and Management, 2016, 376, 333-342.	1.4	25
29	Land management and land-cover change haveÂimpacts of similar magnitude on surfaceÂtemperature. Nature Climate Change, 2014, 4, 389-393.	8.1	404
30	Modeling nitrous oxide emissions from tile-drained winter wheat fields in Central France. Nutrient Cycling in Agroecosystems, 2014, 98, 27-40.	1.1	9
31	Water use of young maritime pine and <i>Eucalyptus</i> stands in response to climatic drying in south-western France. Plant Ecology and Diversity, 2013, 6, 57-71.	1.0	5
32	Does canopy mean nitrogen concentration explain variation in canopy light use efficiency across 14 contrasting forest sites?. Tree Physiology, 2012, 32, 200-218.	1.4	23
33	Modeling the ecohydrological processes in the Landes de Gascogne, SW France. , 2012, , .		1
34	Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sensing of Environment, 2012, 123, 234-245.	4.6	161
35	Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.	3.5	111
36	Spatial and temporal CO ₂ exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production. Biogeosciences, 2012, 9, 249-268.	1.3	39

#	Article	IF	CITATIONS
37	Seasonal variations of belowground carbon transfer assessed by in situ & placetime amp; t; sup& t; sup& t; sup& t; sub& t; sub& t; sub& t; pulse labelling of trees. Biogeosciences, 2011, 8, 1153-1168.	1.3	81
38	<i>In situ</i> assessment of the velocity of carbon transfer by tracing ¹³ C in trunk CO ₂ efflux after pulse labelling: variations among tree species and seasons. New Phytologist, 2011, 190, 181-192.	3.5	89
39	Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Annals of Forest Science, 2011, 68, 443.	0.8	52
40	Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus) Tj ETQq0 31, 903-921.	0 0 rgBT / 1.4	Overlock 10 43
41	Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytologist, 2010, 188, 576-589.	3.5	119
42	The European carbon balance. Part 3: forests. Global Change Biology, 2010, 16, 1429-1450.	4.2	247
43	Observing the Forest Canopy with a New Ultra-Violet Compact Airborne Lidar. Sensors, 2010, 10, 7386-7403.	2.1	16
44	Simultaneous measurements of CO ₂ and water exchanges over three agroecosystems in South-West France. Biogeosciences, 2009, 6, 2957-2971.	1.3	22
45	Carbon stable isotope ratio of phloem sugars in mature pine trees throughout the growing season: comparison of two extraction methods. Rapid Communications in Mass Spectrometry, 2009, 23, 2511-2518.	0.7	34
46	A singleâ€substrate model to interpret intraâ€annual stable isotope signals in treeâ€ring cellulose. Plant, Cell and Environment, 2009, 32, 1071-1090.	2.8	100
47	Établissement d'équations prédisant la concentration en nutriments des compartiments de l'arbre vue d'une amélioration des modÃ"les d'exportation de nutriments par récolte de biomasse. Annals of Forest Science, 2008, 65, 808-808.	en 0.8	44
48	Manipulation de la disponibilité en eau et éléments minéraux dans une plantation de pins maritimes: effet sur la croissance, la production, l'allocation de la biomasse à la fermeture du couvert. Annals of Forest Science, 2008, 65, 814-814.	0.8	43
49	Magnani et al. reply. Nature, 2008, 451, E3-E4.	13.7	20
50	Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology, 2008, 14, 92-108.	4.2	132
51	Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability. Agricultural and Forest Meteorology, 2008, 148, 1508-1523.	1.9	51
52	Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 2007, 143, 123-145.	1.9	509
53	Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data. Agricultural and Forest Meteorology, 2007, 144, 14-31.	1.9	138
54	The human footprint in the carbon cycle of temperate and boreal forests. Nature, 2007, 447, 849-851.	13.7	868

#	Article	IF	CITATIONS
55	Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 2007, 13, 634-651.	4.2	486
56	Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global Change Biology, 2007, 13, 2110-2127.	4.2	69
57	CO ₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13, 2509-2537.	4.2	863
58	The likely impact of elevated [CO 2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 2007, 173, 463-480.	3.5	579
59	Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agricultural and Forest Meteorology, 2006, 141, 35-56.	1.9	100
60	The CarboEurope Regional Experiment Strategy. Bulletin of the American Meteorological Society, 2006, 87, 1367-1380.	1.7	101
61	On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424-1439.	4.2	2,778
62	Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437, 529-533.	13.7	3,245
63	Agrometeorological Research and Applications Needed to Prepare Agriculture and Forestry to 21st Century Climate Change. Climatic Change, 2005, 70, 319-340.	1.7	23
64	Interactive effects of phosphorus and light availability on early growth of maritime pine seedlings. Annals of Forest Science, 2005, 62, 575-583.	0.8	16
65	Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. Annals of Forest Science, 2005, 62, 537-543.	0.8	24
66	Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiology, 2005, 25, 813-823.	1.4	103
67	Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agricultural and Forest Meteorology, 2005, 129, 105-119.	1.9	165
68	Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis. Agricultural and Forest Meteorology, 2005, 131, 97-124.	1.9	65
69	Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology, 2004, 24, 1285-1293.	1.4	123
70	Hydraulic responses to height growth in maritime pine trees. Plant, Cell and Environment, 2004, 27, 1077-1087.	2.8	120
71	Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Global Change Biology, 2004, 10, 1707-1723.	4.2	135
72	Stomatal conductance and root-to-shoot signalling in chestnut saplings exposed to Phytophthora cinnamomi or partial soil drying. Functional Plant Biology, 2004, 31, 41.	1.1	35

#	Article	IF	CITATIONS
73	The annual carbon budget of a French pine forest (Pinus pinaster) following harvest. Global Change Biology, 2003, 9, 1051-1065.	4.2	106
74	MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Global Change Biology, 2003, 9, 697-717.	4.2	139
7 5	Variability of stem and branch maintenance respiration in a Pinus pinaster tree. Tree Physiology, 2003, 23, 227-236.	1.4	50
76	Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster AıÌ^t.). Forest Ecology and Management, 2002, 158, 71-83.	1.4	101
77	Osmotic adjustment in Pinus pinaster cuttings in response to a soil drying cycle. Annals of Forest Science, 2002, 59, 795-799.	0.8	18
78	Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2 O fluxes at six forest sites in Europe. Global Change Biology, 2002, 8, 213-230.	4.2	135
79	Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant, Cell and Environment, 2002, 25, 1155-1165.	2.8	208
80	Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell and Environment, 2002, 25, 1167-1179.	2.8	685
81	Effects of variable root damage caused by Phytophthora cinnamomi on water relations of chestnut saplings. Annals of Forest Science, 2001, 58, 639-651.	0.8	31
82	Carbon balance gradient in European forests: should we doubt â€~surprising' results? A reply to Piovesan & Science, 2001, 12, 145-150.	1.1	24
83	Estimating the foliage area of Maritime pine (Pinus pinaster Aë½½t.) branches and crowns with application to modelling the foliage area distribution in the crown. Annals of Forest Science, 2000, 57, 73-86.	0.8	80
84	A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 2000, 57, 755-765.	0.8	248
85	Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404, 861-865.	13.7	1,438
86	The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology, 2000, 44, 67-75.	1.3	330
87	Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiology, 1999, 19, 707-715.	1.4	81
88	Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus pinaster. Tree Physiology, 1998, 18, 223-232.	1.4	79
89	Within-ring l´13C spatial variability and interannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Canadian Journal of Forest Research, 1998, 28, 766-773.	0.8	33
90	Interpreting the variations in xylem sap flux density within the trunk of maritime pine (Pinus pinaster) Tj ETQq0 Sciences ForestiÃ"res, 1998, 55, 29-46.	0 0 rgBT /0 1.1	Overlock 10 Tf 82

Sciences ForestiÃ"res, 1998, 55, 29-46.

#	Article	IF	CITATIONS
91	Within-ring \hat{l}' (sup>13 (sup>C spatial variability and interannual variations in wood cellulose of two contrasting provenances of <i>Pinus pinaster (i). Canadian Journal of Forest Research, 1998, 28, 766-773.</i>	0.8	29
92	Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia, 1996, 107, 33-42.	0.9	179
93	Transpiration of a 64-year old maritime pine stand in Portugal. Oecologia, 1996, 107, 43-52.	0.9	56
94	Growth and uptake of mineral elements in response to sodium chloride of three provenances of maritime pine1. Journal of Plant Nutrition, 1995, 18, 243-256.	0.9	18
95	Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agricultural and Forest Meteorology, 1994, 71, 61-81.	1.9	230
96	Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy. Journal of Hydrology, 1992, 138, 449-467.	2.3	116
97	Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash's analytical model of interception. Journal of Hydrology, 1992, 138, 469-485.	2.3	78
98	Comparison of two methods for estimating the evaporation of a Pinus pinaster (Ait.) stand: sap flow and energy balance with sensible heat flux measurements by an eddy covariance method. Agricultural and Forest Meteorology, 1991, 54, 49-66.	1.9	75
99	Relations entre la microtopographie, les caractéristiques de la couverture morte et la répartition des essences dans une érablià re À Bouleau jaune. Canadian Journal of Forest Research, 1988, 18, 1196-1202.	0.8	11