
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/909129/publications.pdf Version: 2024-02-01

FUCEN RUSH

#	Article	IF	CITATIONS
1	Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore. Energies, 2013, 6, 1344-1364.	1.6	180
2	Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore. Renewable Energy, 2009, 34, 1501-1516.	4.3	146
3	Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renewable Energy, 2016, 85, 687-703.	4.3	111
4	A review of the technologies for wave energy extraction. Clean Energy, 2018, 2, 10-19.	1.5	109
5	Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments. Energies, 2014, 7, 4002-4018.	1.6	105
6	Wave energy pattern around the Madeira Islands. Energy, 2012, 45, 771-785.	4.5	96
7	Evaluation of the wind and wave energy along the Caspian Sea. Energy, 2013, 50, 1-14.	4.5	96
8	Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renewable Energy, 2013, 58, 34-49.	4.3	88
9	Wave energy assessments in the Black Sea. Journal of Marine Science and Technology, 2009, 14, 359-372.	1.3	72
10	Evaluation of the wave conditions in Madeira Archipelago with spectral models. Ocean Engineering, 2008, 35, 1357-1371.	1.9	68
11	Control Strategies Applied to Wave Energy Converters: State of the Art. Energies, 2019, 12, 3115.	1.6	66
12	Wind energy assessments along the Black Sea basin. Meteorological Applications, 2014, 21, 316-329.	0.9	53
13	A 30-year projection of the future wind energy resources in the coastal environment of the Black Sea. Renewable Energy, 2019, 139, 228-234.	4.3	48
14	Efficiency assessments for some state of the art wind turbines in the coastal environments of the Black and the Caspian seas. Energy Exploration and Exploitation, 2016, 34, 217-234.	1.1	45
15	Assessment of the changes induced by a wave energy farm in the nearshore wave conditions. Computers and Geosciences, 2014, 71, 50-61.	2.0	44
16	The Environmental Impact of a Wave Dragon Array Operating in the Black Sea. Scientific World Journal, The, 2013, 2013, 1-20.	0.8	42
17	An Evaluation of the Wind Energy in the North-West of the Black Sea. International Journal of Green Energy, 2014, 11, 465-487.	2.1	42
18	The expected efficiency and coastal impact of a hybrid energy farm operating in the Portuguese nearshore. Energy, 2016, 97, 411-423.	4.5	42

#	Article	IF	CITATIONS
19	Coastal impact assessment of a generic wave farm operating in the Romanian nearshore. Energy, 2014, 72, 652-670.	4.5	39
20	An assessment of the wind and wave power potential in the island environment. Energy, 2019, 175, 830-846.	4.5	39
21	A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments. Renewable Energy, 2019, 143, 1594-1607.	4.3	38
22	Climate change effects on the marine characteristics of the Aegean and Ionian Seas. Ocean Dynamics, 2016, 66, 1603-1635.	0.9	37
23	Evaluation of the Wind Energy Potential in the Coastal Environment of Two Enclosed Seas. Advances in Meteorology, 2015, 2015, 1-14.	0.6	36
24	Wave modelling at the entrance of ports. Ocean Engineering, 2011, 38, 2089-2109.	1.9	35
25	Study on the influence of the distance to shore for a wave energy farm operating in the central part of the Portuguese nearshore. Energy Conversion and Management, 2016, 114, 209-223.	4.4	33
26	An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections. Renewable Energy, 2020, 160, 350-362.	4.3	32
27	Modelling of wave–current interactions at the mouths of the Danube. Journal of Marine Science and Technology, 2010, 15, 143-159.	1.3	31
28	Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements. Energies, 2021, 14, 394.	1.6	31
29	Sustainability of the Reanalysis Databases in Predicting the Wind and Wave Power along the European Coasts. Sustainability, 2018, 10, 193.	1.6	30
30	Evaluation of the wave transformation in an open bay with two spectral models. Ocean Engineering, 2011, 38, 1763-1781.	1.9	28
31	Assessment of the potential for developing combined wind-wave projects in the European nearshore. Energy and Environment, 2017, 28, 580-597.	2.7	27
32	Joint Evaluation of the Wave and Offshore Wind Energy Resources in the Developing Countries. Energies, 2017, 10, 1866.	1.6	26
33	A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands. Sustainability, 2017, 9, 1025.	1.6	24
34	A Novel Method for Estimating Wave Energy Converter Performance in Variable Bathymetry Regions and Applications. Energies, 2018, 11, 2092.	1.6	24
35	A hybrid framework for predicting waves and longshore currents. Journal of Marine Systems, 2008, 69, 59-73.	0.9	23
36	Validation of Two Wave and Nearshore Current Models. Journal of Waterway, Port, Coastal and Ocean Engineering, 2010, 136, 27-45.	0.5	21

#	Article	IF	CITATIONS
37	Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea. Energy, 2021, 220, 119705.	4.5	20
38	Emerging Floating Photovoltaic System—Case Studies High Dam and Aswan Reservoir in Egypt. Processes, 2021, 9, 1005.	1.3	19
39	The Effect of a Wave Energy Farm Protecting an Aquaculture Installation. Energies, 2018, 11, 2109.	1.6	18
40	Temporal Variation of the Wave Energy Flux in Hotspot Areas of the Black Sea. Sustainability, 2019, 11, 562.	1.6	18
41	Modeling Waves in Open Coastal Areas and Harbors with Phase-Resolving and Phase-Averaged Models. Journal of Coastal Research, 2012, 29, 1309.	0.1	15
42	High-Resolution Wave Energy Assessment in Shallow Water Accounting for Tides. Energies, 2016, 9, 761.	1.6	15
43	Evaluation of the Circulation Patterns in the Black Sea Using Remotely Sensed and <i>in Situ</i> Measurements. International Journal of Geosciences, 2013, 04, 1009-1017.	0.2	15
44	Multi-DOF WEC Performance in Variable Bathymetry Regions Using a Hybrid 3D BEM and Optimization. Energies, 2019, 12, 2108.	1.6	13
45	Implementation of Offshore Wind Turbines to Reduce Air Pollution in Coastal Areas—Case Study Constanta Harbour in the Black Sea. Journal of Marine Science and Engineering, 2020, 8, 550.	1.2	13
46	A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry. Energies, 2020, 13, 3403.	1.6	13
47	An Evaluation of the Wind Energy Resources along the Spanish Continental Nearshore. Energies, 2020, 13, 3986.	1.6	13
48	An Evaluation of the Wind and Wave Dynamics along the European Coasts. Journal of Marine Science and Engineering, 2019, 7, 43.	1.2	12
49	NUMERICAL MODELLING OF LONGSHORE CURRENTS IN MARINE ENVIRONMENT. Environmental Engineering and Management Journal, 2009, 8, 147-151.	0.2	12
50	Reliability and Applications of the Numerical Wave Predictions in the Black Sea. Frontiers in Marine Science, 2016, 3, .	1.2	11
51	The Expected Shoreline Effect of a Marine Energy Farm Operating Close to Sardinia Island. Water (Switzerland), 2019, 11, 2303.	1.2	11
52	Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore. Energies, 2020, 13, 4832.	1.6	11
53	Optimal Control of an Ultraviolet Water Disinfection System. Applied Sciences (Switzerland), 2021, 11, 2638.	1.3	11
54	Assessment of the wind power dynamics in the North Sea under climate change conditions. Renewable Energy, 2022, 195, 466-475.	4.3	11

#	Article	IF	CITATIONS
55	Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input. Energies, 2018, 11, 2989.	1.6	10
56	Special Issue "Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind― Energies, 2019, 12, 182.	1.6	10
57	A Mathematical Model of Biomass Combustion Physical and Chemical Processes. Energies, 2020, 13, 6232.	1.6	10
58	Wave Farms Impact on the Coastal Processes—A Case Study Area in the Portuguese Nearshore. Journal of Marine Science and Engineering, 2021, 9, 262.	1.2	10
59	A Novel Hexagonal-Shaped Multilevel Inverter with Reduced Switches for Grid-Integrated Photovoltaic System. Sustainability, 2021, 13, 12018.	1.6	10
60	Assessment of the wind energy potential in the coastal environment of two enclosed seas. , 2015, , .		9
61	Evaluation of Two Spectral Wave Models in Coastal Areas. Journal of Coastal Research, 2015, 300, 326-339.	0.1	9
62	Numerical Modeling of the Wave Energy Propagation in the Iberian Nearshore. Energies, 2018, 11, 980.	1.6	9
63	Study of the Wave Energy Propagation Patterns in the Western Black Sea. Applied Sciences (Switzerland), 2018, 8, 993.	1.3	9
64	An Assessment of Wind Energy Potential in the Caspian Sea. Energies, 2019, 12, 2525.	1.6	9
65	An Overview of the Expected Shoreline Impact of the Marine Energy Farms Operating in Different Coastal Environments. Journal of Marine Science and Engineering, 2020, 8, 228.	1.2	9
66	Assessment of the Wind Energy Potential along the Romanian Coastal Zone. Inventions, 2021, 6, 41.	1.3	9
67	An evaluation of the wave energy resources in the proximity of the wind farms operating in the North Sea. Energy Reports, 2021, 7, 19-27.	2.5	9
68	Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources. Sustainability, 2022, 14, 4249.	1.6	9
69	Wave Energy Assessments in the Coastal Environment of Portugal Continental. , 2008, , .		8
70	An Investigation into the Health Risks Associated with the Noise and Vibrations on Board of a Boat—A Case Study on the Danube River. Journal of Marine Science and Engineering, 2019, 7, 258.	1.2	8
71	Implementation Aspects Regarding Closed-Loop Control Systems Using Evolutionary Algorithms. Inventions, 2021, 6, 53.	1.3	8
72	A multi-parameter data-assimilation approach for wave prediction in coastal areas. Journal of Operational Oceanography, 2016, 9, 13-25.	0.6	7

#	Article	IF	CITATIONS
73	Green fuels — A new challenge for marine industry. Energy Reports, 2021, 7, 127-132.	2.5	7
74	Analysis of the Effect of a Marine Energy Farm to Protect a Biosphere Reserve. MATEC Web of Conferences, 2016, 62, 06004.	0.1	6
75	EVALUATION OF THE LONGSHORE CURRENT FOR A SECTOR OF THE PORTUGUESE WEST COAST: APPLICATION OF DIFFERENT METHODOLOGIES. , 2005, , .		6
76	AN EVALUATION OF THE WIND ENERGY IN THE NORTH SEA COAST. Mechanical Testing and Diagnosis, 2019, 9, 17-22.	0.1	6
77	An Analysis of the Wind Parameters in the Western Side of the Black Sea. Inventions, 2022, 7, 21.	1.3	6
78	Aerodynamic Simulations for Floating Darrieus-Type Wind Turbines with Three-Stage Rotors. Inventions, 2020, 5, 18.	1.3	5
79	Assessment of the Offshore Wind Energy Potential in the Romanian Exclusive Economic Zone. Journal of Marine Science and Engineering, 2021, 9, 531.	1.2	5
80	Triac Based Novel Single Phase Step-Down Cycloconverter with Reduced THDs for Variable Speed Applications. Applied Sciences (Switzerland), 2021, 11, 8688.	1.3	5
81	Performance analysis of a RDF gasification and solar thermal energy based CCHP system. Energy Reports, 2021, 7, 186-192.	2.5	5
82	Studies Concerning the Influence of the Wave Farms on the Nearshore Processes. International Journal of Geosciences, 2014, 05, 728-738.	0.2	5
83	Estimation of the Tower Shape Effect on the Stress–Strain Behavior of Wind Turbines Operating under Offshore Boundary Conditions. Inventions, 2022, 7, 11.	1.3	5
84	An assessment of the wind power dynamics in the European coastal environment. E3S Web of Conferences, 2020, 173, 01002.	0.2	4
85	Implementation of a Coastal Management Model at Kinvara Bay in the North Atlantic Ocean. Journal of Marine Science and Engineering, 2020, 8, 71.	1.2	4
86	The Expected Impact of Marine Energy Farms Operating in Island Environments with Mild Wave Energy Resources—A Case Study in the Mediterranean Sea. Inventions, 2021, 6, 33.	1.3	4
87	Hydrodynamic Analysis of Twin-Hull Structures Supporting Floating PV Systems in Offshore and Coastal Regions. Energies, 2021, 14, 5979.	1.6	4
88	Towards Green Marine Technology and Transport. , 0, , .		4
89	Introducing the Living Lab Approach in the Coastal Area of Constanta (Romania) by Using Design Thinking. Inventions, 2022, 7, 19.	1.3	4
90	A High-Gain Multiphase Interleaved Differential Capacitor Clamped Boost Converter. Electronics (Switzerland), 2022, 11, 264.	1.8	4

#	Article	IF	CITATIONS
91	UXO Assessment on the Romanian Black Sea Coast. Journal of Marine Science, 2022, 4, 7.	0.1	4
92	Hybrid Solutions for Energy Extraction in Coastal Environment. Energy Procedia, 2017, 118, 46-53.	1.8	3
93	The efficiency and coastal protection provided by a floating wind farm operating in the Romanian nearshore. Energy Reports, 2021, 7, 13-18.	2.5	3
94	THE MIDDLE WAY OF SURF MODELING. , 2007, , .		3
95	Performance of Multifunctional Smart PV-Based Domestic Distributed Generator in Dual-Mode Operation. Machines, 2021, 9, 356.	1.2	3
96	Predictions Based on Evolutionary Algorithms Using Predefined Control Profiles. Electronics (Switzerland), 2022, 11, 1682.	1.8	3
97	Evaluation of the wind power potential in the European nearshore of the Mediterranean Sea. E3S Web of Conferences, 2019, 103, 01003.	0.2	2
98	Evaluation of Different Simulation Methods for Analyzing Flood Scenarios in the Danube Delta. Applied Sciences (Switzerland), 2020, 10, 8327.	1.3	2
99	Addendum: Maria-Arenas, A. et al. Control Strategies Applied to Wave Energy Converters: State of the Art. Energies 2019, 12, 3115. Energies, 2020, 13, 1665.	1.6	2
100	A Numerical Model of Biomass Combustion Physical and Chemical Processes. Energies, 2021, 14, 1978.	1.6	2
101	Multi-Criteria Analysis of the Mass Tourism Management Model Related to the Impact on the Local Community in Constanta City (Romania). Inventions, 2021, 6, 46.	1.3	2
102	Analysis of the Mamaia Bay shoreline Retreat with Hard and Soft Protection Works. Journal of Marine Science, 2019, 1, .	0.1	2
103	Strategic Placement of Solar Power Plant and Interline Power Flow Controllers for Prevention of Blackouts. Inventions, 2022, 7, 30.	1.3	2
104	Analysis of Some Essential Aspects Related to the Navigation Conditions on the Danube River. Inventions, 2021, 6, 97.	1.3	2
105	Wind Variation near the Black Sea Coastal Areas Reflected by the ERA5 Dataset. Inventions, 2022, 7, 57.	1.3	2
106	A data assimilation scheme to improve the wave predictions in the Black Sea. , 2015, , .		1
107	Dimensionless Normalized Wave Power in the Hot-spot Areas of the Black Sea. E3S Web of Conferences, 2020, 173, 01001.	0.2	1
108	A long-term evaluation of wind energy resources in Republic of Moldova. Energy Reports, 2021, 7, 171-175.	2.5	1

#	Article	IF	CITATIONS
109	Towards controlling the elements: Five wind turbines for a Romanian coastal Black Sea location. Energy Reports, 2021, 7, 160-165.	2.5	1
110	Computational strategies and visualisation techniques for the wave modelling in the Portuguese nearshore. , 2006, , 1129-1136.		1
111	Modelling the effect of wave current interaction at the mouth of the Danube river. , 2013, , 979-986.		1
112	Can Air Quality be Influenced in Coastal Areas by Shipping?. Journal of Marine Science, 2019, 2, .	0.1	1
113	DIGITAL SOIL MAPPING IN A MOUNTAINOUS AREA WITH MIXED LAND USE (HUMOR CATCHMENT - EASTERN) T COVARIATES. Environmental Engineering and Management Journal, 2019, 18, 479-489.	j ETQq1 (0.2	1 0.784314 rgE 1
114	EVALUATING AND PREVENTING POLLUTION FROM NAVIGATION IN THE BLACK SEA COASTAL AREAS IN THE CONTEXT OF CLIMATE CHANGE. Mechanical Testing and Diagnosis, 2020, 9, 19-24.	0.1	1
115	LONG TERM PREDICTION OF WIND SPEED WITH ARTIFICIAL NEURAL NETWORKS. , 2020, , .		1
116	Wave Energy Assessments and Modeling of Wave–Current Interactions in the Black Sea. Environmental Science and Engineering, 2010, , 213-259.	0.1	1
117	Implementation of a Joint System for Waves and Currents in the Black Sea. International Journal of Ocean System Engineering, 2014, 4, 29-42.	0.3	1
118	Prediction of the wave power in the Black Sea based on wind speed using artificial neural networks. E3S Web of Conferences, 2018, 51, 01006.	0.2	1
119	Multiple physical stress exposures of sailors on several ships - a longitudinal study. Annals of the â€Dunarea De Jos―University of Galati Fascicle II Mathematics Physics Theoretical Mechanics, 2018, 41, 84-93.	0.1	1
120	Analysis and Operation of a High DC-AC Gain 3-Ï• Capacitor Clamped Boost Inverter. Energies, 2022, 15, 2955.	1.6	1
121	Prediction of the wave power in the Black Sea based on wind speed using artificial neural networks. E3S Web of Conferences, 2018, 51, 01006.	0.2	Ο
122	Evaluation of the shoreline effect of the marine energy farms in different coastal environments. E3S Web of Conferences, 2018, 51, 03005.	0.2	0
123	Analysis of Wave Energy Conversion with Dynamic Systems Theory. E3S Web of Conferences, 2019, 103, 02003.	0.2	Ο
124	Wind and wave energy resource of Germany reported by ERA-Interim reanalysis data. E3S Web of Conferences, 2019, 122, 04003.	0.2	0
125	Special Issue "Advances and Challenges in Harvesting Ocean Energy― Energies, 2021, 14, 4543.	1.6	Ο
126	Evaluation of the wave power potential in the northwestern side of the Iberian nearshore. , 2013, ,		0

1011-1019.

#	Article	IF	CITATIONS
127	Efficiency assessment for different WEC types operating in the Portuguese coastal environment. , 2013, , 961-969.		Ο
128	Influence of a new quay on the wave propagation inside the Sines harbour. , 2014, , 1355-1364.		0
129	Evaluation of the shoreline effect of the marine energy farms in different coastal environments. E3S Web of Conferences, 2018, 51, 03005.	0.2	0
130	Use of GIS technology in flood risk analysis. Case study Mila 23 locality from the Danube Delta. Annals of the â€Đunarea De Jos―University of Galati Fascicle II Mathematics Physics Theoretical Mechanics, 2019, 42, 77-84.	0.1	0
131	Multi-criterial Analysis by Determining the Supportability Factor in the Western of the Black Sea. Journal of Clean Energy Technologies, 2019, 7, 49-55.	0.1	0
132	Non-linear characteristics of transmissibility in the dynamic responses of standing subjects exposed to vertical whole-body vibration. Annals of the â€Dunarea De Jos―University of Galati Fascicle II Mathematics Physics Theoretical Mechanics, 2019, 42, 143-152.	0.1	0
133	Editorial for Special Issue "Perspectives and Challenges in Doctoral Research—Selected Papers from the 9th Edition of the Scientific Conference of the Doctoral Schools from the "DunÄfrea de Josâ€: Inventions, 2022, 7, 33.	1.3	Ο