
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9091191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Advanced Optical Materials, 2022, 10, 2102113.	7.3	28
2	Ultra-broadband, high-efficiency, and wafer-scale fiber-to-chip coupling using free-form micro-optical reflectors. , 2022, , .		1
3	Understanding wide field-of-view metalenses. , 2022, , .		0
4	Phase change materials: the 'silicon' for analog photonic computing?. , 2022, , .		0
5	Deep neural network enabled active metasurface embedded design. Nanophotonics, 2022, 11, 4149-4158.	6.0	18
6	Reconfigurable Parfocal Zoom Metalens. Advanced Optical Materials, 2022, 10, .	7.3	18
7	Design of Hybrid Plasmonic Multi-Quantum-Well Electro-Reflective Modulators Towards <100 fJ/bit Photonic Links. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	2.9	8
8	Multiâ€Level Electroâ€Thermal Switching of Optical Phaseâ€Change Materials Using Graphene. Advanced Photonics Research, 2021, 2, 2000034.	3.6	75
9	Multifunctional Metasurface Design with a Generative Adversarial Network. Advanced Optical Materials, 2021, 9, 2001433.	7.3	78
10	Nonlinear Midâ€Infrared Metasurface based on a Phaseâ€Change Material. Laser and Photonics Reviews, 2021, 15, 2000373.	8.7	25
11	Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 2021, 12, 1225.	12.8	221
12	On-chip optical tweezers based on freeform optics. Optica, 2021, 8, 409.	9.3	37
13	Specific detection of glucose by an optical weak measurement sensor. Biomedical Optics Express, 2021, 12, 5128.	2.9	3
14	Multifunctional Metasurface Design with a Generative Adversarial Network (Advanced Optical) Tj ETQq0 0 0 rgBT	/9.yerlock	10 Tf 50 22 1
15	Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16, 661-666.	31.5	298
16	Large-area optical metasurface fabrication using nanostencil lithography. Optics Letters, 2021, 46, 2324.	3.3	8
17	Myths and truths about optical phase change materials: A perspective. Applied Physics Letters, 2021, 118,	3.3	76
18	Transient Tap Couplers for Wafer-Level Photonic Testing Based on Optical Phase Change Materials. ACS Photonics, 2021, 8, 1903-1908.	6.6	24

#	Article	IF	CITATIONS
19	A flexible polymer waveguide platform with low-loss optical interfaces. , 2021, , .		0
20	Optimization of the Weak Measurement System by Determining the Optimal Total Phase Difference. IEEE Photonics Journal, 2021, 13, 1-8.	2.0	0
21	High-Throughput Chiral Molecule Determination Based on Multi-Channel Weak Measurement. IEEE Photonics Journal, 2021, 13, 1-12.	2.0	1
22	Reconfigurable Mid-infrared Photonics. , 2021, , .		1
23	Unpaired Stain Transfer Using Pathology-Consistent Constrained Generative Adversarial Networks. IEEE Transactions on Medical Imaging, 2021, 40, 1977-1989.	8.9	51
24	Electrically-switchable foundry-processed phase change photonic devices. , 2021, , .		5
25	Imaging Sensor for the Detection of the Flow Battery Via Weak Value Amplification. Analytical Chemistry, 2021, 93, 12914-12920.	6.5	7
26	A Deep Learning Approach to Explore the Mutual Coupling Effects in Metasurfaces. , 2021, , .		1
27	Wide Field-of-view Achromatic Metalenses. , 2021, , .		1
28	Design of broadband and wide field-of-view metalenses. Optics Letters, 2021, 46, 5735-5738.	3.3	18
29	Enhanced Third-Harmonic Generation by a Mid-Infrared Phase-Change Metasurface. , 2021, , .		0
30	Hybrid Integrated Photonic Platforms: feature issue introduction. Optical Materials Express, 2021, 11, 4095.	3.0	1
31	Ge2Sb2Se4Te1 Metasurface for Enhancing Third-Harmonic Generation in the Mid-Infrared. , 2021, , .		0
32	A Deep Neural Network Near-Universal Dielectric Meta-Atom Generator. , 2021, , .		0
33	Spectrum Intensity Ratio Detection for Frequency Domain Weak Measurement System. IEEE Photonics Journal, 2020, 12, 1-12.	2.0	3
34	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	6.6	49
35	Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 2020, 20, 7429-7437.	9.1	104
36	Low-Voltage, Coupled Multiple Quantum Well Electroreflective Modulators Towards Ultralow Power Inter-Chip Optical Interconnects. Journal of Lightwave Technology, 2020, 38, 3414-3421.	4.6	8

#	Article	IF	CITATIONS
37	Spectral-Domain Phase Microscopy for Thickness Encoded Suspension Array. IEEE Photonics Technology Letters, 2020, 32, 461-464.	2.5	Ο
38	Optical Free-Form Couplers for High-density Integrated Photonics (OFFCHIP): A Universal Optical Interface. Journal of Lightwave Technology, 2020, 38, 3358-3365.	4.6	22
39	Hydrogel-based microbeads for Raman-encoded suspension array using the reversed-phase suspension polymerization method and ultraviolet light curing. Analytical and Bioanalytical Chemistry, 2020, 412, 2731-2741.	3.7	2
40	Compact and Fabrication-Tolerant Waveguide Bends Based on Quadratic Reflectors. Journal of Lightwave Technology, 2020, 38, 4368-4373.	4.6	12
41	Deep learning modeling approach for metasurfaces with high degrees of freedom. Optics Express, 2020, 28, 31932.	3.4	73
42	High-performance graphene-integrated thermo-optic switch: design and experimental validation [Invited]. Optical Materials Express, 2020, 10, 387.	3.0	13
43	Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips. Photonics Research, 2020, 8, 186.	7.0	15
44	Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 2020, 9, 3505-3534.	6.0	87
45	What makes the best chip-scale photonic sensor?. , 2020, , .		Ο
46	Compact and Fabrication-Tolerant Single-Mode Polymer Waveguide Bends. , 2020, , .		0
47	Optical phase-change materials (O-PCMs) for reconfigurable photonics. , 2020, , .		1
48	Real-time, in-situ monitoring of Gamma radiation effects in packaged silicon photonic chips. , 2020, , .		0
49	Integrated Quadratic Reflectors for High-Performance Optical Interconnects. , 2020, , .		Ο
50	Detection of Macromolecular Content in a Mixed Solution of Protein Macromolecules and Small Molecules Using a Weak Measurement Linear Differential System. Analytical Chemistry, 2019, 91, 11576-11581.	6.5	11
51	Gold-nanorod-enhanced Raman spectroscopy encoded micro-quartz pieces for the multiplex detection of biomolecules. Analytical and Bioanalytical Chemistry, 2019, 411, 5509-5518.	3.7	6
52	High-Performance Single-Mode Polymer Waveguide Devices for Chip-Scale Optical Interconnects. , 2019, , .		3
53	Enhanced Interferometric Weak Value Amplification With Multiple Reflection. IEEE Photonics Technology Letters, 2019, 31, 1557-1560.	2.5	0
54	Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 2019, 10, 4279.	12.8	349

#	Article	IF	CITATIONS
55	Fast and accurate decoding of Raman spectra-encoded suspension arrays using deep learning. Analyst, The, 2019, 144, 4312-4319.	3.5	27
56	A Differential Detection Method Based on a Linear Weak Measurement System. Sensors, 2019, 19, 2473.	3.8	1
57	Multifunctional weak measurement system that can measure the refractive index and optical rotation of a solution. Applied Physics Letters, 2019, 114, .	3.3	21
58	The real-time determination of d- and l-lactate based on optical weak measurement. Analytical Methods, 2019, 11, 2223-2230.	2.7	4
59	Chalcogenide glass metasurfaces from fluid instabilities. Nature Nanotechnology, 2019, 14, 309-311.	31.5	3
60	Micro-Prism Spectrum Splitting Optics for Lateral-Arrayed Multi Junction Micro CPV. , 2019, , .		1
61	A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics, 2019, 6, 3196-3207.	6.6	212
62	In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries. Nature Communications, 2019, 10, 5286.	12.8	45
63	Spectral-optical-tweezer-assisted fluorescence multiplexing system for QDs-encoded bead-array bioassay. Biosensors and Bioelectronics, 2019, 129, 107-117.	10.1	12
64	Reversible Switching of Optical Phase Change Materials Using Graphene Microheaters. , 2019, , .		9
65	Low loss, flexible single-mode polymer photonics. Optics Express, 2019, 27, 11152.	3.4	41
66	Seamless Hybrid-integrated Interconnect NEtwork (SHINE). , 2019, , .		9
67	Compact spectrum splitter for laterally arrayed multi-junction concentrator photovoltaic modules. Optics Letters, 2019, 44, 3274.	3.3	7
68	Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry. Optical Materials Express, 2019, 9, 2252.	3.0	12
69	Chip-scale Digital Fourier Transform Spectroscopy. , 2019, , .		Ο
70	Single-layer Planar Metasurface Lens with >170 \hat{A}° Field of View. , 2019, , .		3
71	Electrically Reconfigurable Nonvolatile Metasurface Using Optical Phase Change Materials. , 2019, , .		3
72	Integrated photonics put at full stretch: flexible and stretchable photonic devices enabled by optical and mechanical co-design. , 2019, , .		0

#	Article	IF	CITATIONS
73	Reshaping light: reconfigurable photonics enabled by broadband low-loss optical phase change materials. , 2019, , .		3
74	Chip-scale high-performance digital Fourier Transform (dFT) spectrometers. , 2019, , .		1
75	Designing nonvolatile integrated photonics with low-loss optical phase change materials. , 2019, , .		3
76	Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9, 1481.	12.8	126
77	Monolithically integrated stretchable photonics. Light: Science and Applications, 2018, 7, 17138-17138.	16.6	94
78	A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances. Biosensors and Bioelectronics, 2018, 110, 103-109.	10.1	36
79	Rapid Separation of Enantiomeric Impurities in Chiral Molecules by a Self-Referential Weak Measurement System. Sensors, 2018, 18, 3788.	3.8	5
80	Passive directional sub-ambient daytime radiative cooling. Nature Communications, 2018, 9, 5001.	12.8	179
81	High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications, 2018, 9, 4405.	12.8	173
82	Optimization of a quantum weak measurement system with digital filtering technology. Applied Optics, 2018, 57, 7956.	1.8	13
83	Ultra-thin, high-efficiency mid-infrared Huygens metasurface optics. , 2018, , .		1
84	Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain. Applied Physics Letters, 2018, 112, .	3.3	41
85	Dual-spectra encoded suspension array using reversed-phase microemulsion UV curing and electrostatic self-assembling. RSC Advances, 2018, 8, 21272-21279.	3.6	4
86	High-performance flexible waveguide-integrated photodetectors. Optica, 2018, 5, 44.	9.3	54
87	Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 2018, 6, 506.	7.0	78
88	Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Optics Letters, 2018, 43, 94.	3.3	222
89	Wafer integrated microâ€scale concentrating photovoltaics. Progress in Photovoltaics: Research and Applications, 2018, 26, 651-658.	8.1	14
90	Optimization of a quantum weak measurement system with its working areas. Optics Express, 2018, 26, 21119.	3.4	29

#	Article	IF	CITATIONS
91	Stretchable Integrated Microphotonics. , 2018, , .		1
92	Reconfigurable photonics enabled by optical phase change materials (Conference Presentation). , 2018, , .		1
93	A new twist on glass: A brittle material enabling flexible integrated photonics. International Journal of Applied Glass Science, 2017, 8, 61-68.	2.0	27
94	Nondisturbing transverse acoustic sensor based on weak measurement in Mach–Zehnder interferometer. Optical Engineering, 2017, 56, 034107.	1.0	4
95	Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11, 798-805.	31.4	190
96	Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 2017, 7, 393-420.	6.0	280
97	On-Chip Infrared Spectroscopic Sensing: Redefining the Benefits of Scaling. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 340-349.	2.9	49
98	Wafer Integrated Micro-scale Concentrating Photovoltaics. , 2017, , .		2
99	Broadband Transparent Optical Phase Change Materials. , 2017, , .		25
100	Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay. Journal of Biomedical Optics, 2017, 22, 1.	2.6	1
101	Suspended chalcogenide microcavities for ultra-sensitive chemical detection. , 2016, , .		Ο
102	Wafer-level Integrated Micro-Concentrating Photovoltaics. , 2016, , .		10
103	Micro-concentrator module for Microsystems-Enabled Photovoltaics: Optical performance characterization, modelling and analysis. , 2015, , .		4
104	Micro-concentrators for a microsystems-enabled photovoltaic system. Optics Express, 2014, 22, A521.	3.4	36
105	Chip-to-chip optical interconnects based on flexible integrated photonics. Proceedings of SPIE, 2014, , .	0.8	1
106	Hybrid micro-scale CPV/PV architecture. , 2014, , .		17
107	Energy-per-bit advantages of chip-scale hybrid-integrated optical interconnects using surface-normal electro-aborption MQW modulators. , 2013, , .		2
108	Chip-Level Multiple Quantum Well Modulator-Based Optical Interconnects. Journal of Lightwave Technology, 2013, 31, 4166-4174.	4.6	9

#	Article	IF	CITATIONS
109	A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects. Journal of Lightwave Technology, 2013, 31, 4080-4086.	4.6	57
110	Surface-normal electro-aborption MQW modulator-based chip-scale optical interconnects. , 2013, , .		0
111	Vertical optical power delivery and inter-chip interconnect concept based on surface-normal MQW modulators. , 2013, , .		1
112	A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. , 2013, , .		0
113	Chip-scale optical interconnects based on hybrid integrated multiple quantum well devices. , 2012, , .		2
114	Integrated free-space optical interconnects: All optical communications on- and off-chip. , 2012, , .		2
115	Hybrid chip-scale optical interconnects using multiple quantum well devices bonded to silicon. , 2012, , .		5
116	Chip-scale integrated optical interconnects: a key enabler for future high-performance computing. Proceedings of SPIE, 2012, , .	0.8	9
117	Effects of Electrode Insertion Depth on Mandarin Speech Understanding Using Combined Electric and Acoustic Stimulation. , 2011, , .		0
118	Demonstration of chip-scale optical interconnects based on the integration of polymer waveguides and multiple quantum well modulators on silicon. , 2011, , .		4
119	On-chip guided-wave optical interconnects using multiple quantum well modulators. , 2011, , .		2
120	Prismatic Coupling Structure for Intrachip Global Communication. IEEE Journal of Quantum Electronics, 2009, 45, 388-395.	1.9	8
121	Multiscale free-space optical interconnects for intrachip global communication: motivation, analysis, and experimental validation. Applied Optics, 2006, 45, 6358.	2.1	29
122	Coupling Structure for Intrachip Optical Global Communication: Design and Simulation. , 2006, , .		1