Daniel G Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9090795/publications.pdf

Version: 2024-02-01

361413 434195 1,171 95 20 31 citations h-index g-index papers 95 95 95 829 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey. Sensors, 2010, 10, 8215-8247.	3.8	100
2	COVIDâ€19 pandemic: a review of smart cities initiatives to face new outbreaks. IET Smart Cities, 2020, 2, 64-73.	3.1	77
3	A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks. Sensors, 2011, 11, 5439-5468.	3.8	57
4	Wireless visual sensor networks for smart city applications: A relevance-based approach for multiple sinks mobility. Future Generation Computer Systems, 2017, 76, 51-62.	7.5	48
5	Availability Issues in Wireless Visual Sensor Networks. Sensors, 2014, 14, 2795-2821.	3.8	47
6	Open-Source Electronics Platforms as Enabling Technologies for Smart Cities: Recent Developments and Perspectives. Electronics (Switzerland), 2018, 7, 404.	3.1	41
7	A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications. Sensors, 2017, 17, 93.	3.8	36
8	Exploiting the sensing relevancies of source nodes for optimizations in visual sensor networks. Multimedia Tools and Applications, 2013, 64, 549-579.	3.9	35
9	A Distributed Multi-Tier Emergency Alerting System Exploiting Sensors-Based Event Detection to Support Smart City Applications. Sensors, 2020, 20, 170.	3.8	33
10	A Survey of Emergencies Management Systems in Smart Cities. IEEE Access, 2022, 10, 61843-61872.	4.2	33
11	Cryptography in Wireless Multimedia Sensor Networks: A Survey and Research Directions. Cryptography, 2017, 1, 4.	2.3	32
12	Visual Sensors Hardware Platforms: A Review. IEEE Sensors Journal, 2020, 20, 4025-4033.	4.7	32
13	A Survey of Image Security in Wireless Sensor Networks. Journal of Imaging, 2015, 1, 4-30.	3.0	31
14	Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization. Sensors, 2015, 15, 1760-1784.	3.8	29
15	A Crowdsensing Platform for Monitoring of Vehicular Emissions: A Smart City Perspective. Future Internet, 2019, 11, 13.	3.8	29
16	TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications. Sensors, 2018, 18, 1080.	3.8	28
17	Enhancing the availability of wireless visual sensor networks: Selecting redundant nodes in networks with occlusion. Applied Mathematical Modelling, 2017, 42, 223-243.	4.2	26
18	Adaptive Monitoring Relevance in Camera Networks for Critical Surveillance Applications. International Journal of Distributed Sensor Networks, 2013, 9, 836721.	2.2	25

#	Article	IF	Citations
19	A TinyML Soft-Sensor Approach for Low-Cost Detection and Monitoring of Vehicular Emissions. Sensors, 2022, 22, 3838.	3.8	25
20	A Discrete Wavelet Transform (DWT)-Based Energy-Efficient Selective Retransmission Mechanism for Wireless Image Sensor Networks. Journal of Sensor and Actuator Networks, 2012, 1, 3-35.	3.9	24
21	A prioritization approach for optimization of multiple concurrent sensing applications in smart cities. Future Generation Computer Systems, 2020, 108, 228-243.	7. 5	21
22	Selecting redundant nodes when addressing availability in wireless visual sensor networks. , 2014, , .		20
23	On redundant coverage maximization in wireless visual sensor networks: Evolutionary algorithms for multi-objective optimization. Applied Soft Computing Journal, 2019, 82, 105578.	7.2	20
24	Automated Methodology for Dependability Evaluation of Wireless Visual Sensor Networks. Sensors, 2018, 18, 2629.	3.8	19
25	A traffic data clustering framework based on fog computing for VANETs. Vehicular Communications, 2021, 31, 100370.	4.0	17
26	A Survey of Technologies and Recent Developments for Sustainable Smart Cycling. Sustainability, 2021, 13, 3422.	3.2	16
27	An Unsupervised TinyML Approach Applied for Pavement Anomalies Detection Under the Internet of Intelligent Vehicles., 2021,,.		16
28	CitySpeed: A Crowdsensing-Based Integrated Platform for General-Purpose Monitoring of Vehicular Speeds in Smart Cities. Smart Cities, 2019, 2, 46-65.	9.4	15
29	A fuzzy-based approach for energy-efficient Wi-Fi communications in dense wireless multimedia sensor networks. Computer Networks, 2018, 134, 127-139.	5.1	14
30	Effect of frame size on energy consumption in wireless image sensor networks. , 2012, , .		12
31	Availability assessment of wireless visual sensor networks for target coverage. , 2014, , .		11
32	Assessing Availability in Wireless Visual Sensor Networks Based on Targets' Perimeters Coverage. Journal of Electrical and Computer Engineering, 2016, 2016, 1-14.	0.9	11
33	Modelling Coverage Failures Caused by Mobile Obstacles for the Selection of Faultless Visual Nodes in Wireless Sensor Networks. IEEE Access, 2020, 8, 41537-41550.	4.2	11
34	On the Computing of Area Coverage by Visual Sensor Networks: Assessing Performance of Approximate and Precise Algorithms. , 2018 , , .		10
35	A routing mechanism based on the sensing relevancies of source nodes for time-critical applications in visual sensor networks. , 2012, , .		9
36	Energy-Efficient Packet Relaying in Wireless Image Sensor Networks Exploiting the Sensing Relevancies of Source Nodes and DWT Coding. Journal of Sensor and Actuator Networks, 2013, 2, 424-448.	3.9	9

#	Article	IF	Citations
37	Enhancing Redundancy in Wireless Visual Sensor Networks for Target Coverage. , 2014, , .		9
38	Optimal sensing redundancy for multiple perspectives of targets in wireless visual sensor networks. , $2015, \ldots$		7
39	Availability issues for relevant area coverage in wireless visual sensor networks. , 2017, , .		7
40	CO ₂ Catcher: A Platform for Monitoring of Vehicular Pollution in Smart Cities., 2017,,.		7
41	On the Use of Cameras for the Detection of Critical Events in Sensors-Based Emergency Alerting Systems. Journal of Sensor and Actuator Networks, 2020, 9, 46.	3.9	7
42	iBikeSafe: A Multi-Parameter System for Monitoring, Evaluation and Visualization of Cycling Paths in Smart Cities Targeted at Cycling Adverse Conditions. Smart Cities, 2021, 4, 1058-1086.	9.4	7
43	BikeWay: A Multi-Sensory Fuzzy-Based Quality Metric for Bike Paths and Tracks in Urban Areas. IEEE Access, 2020, 8, 227313-227326.	4.2	7
44	QoV: Assessing the monitoring quality in visual sensor networks. , 2012, , .		6
45	New challenges of real-time wireless sensor networks: Theory and applications. International Journal of Distributed Sensor Networks, 2016, 12, 155014771666807.	2.2	6
46	A Comprehensive Dependability Model for QoM-Aware Industrial WSN When Performing Visual Area Coverage in Occluded Scenarios. Sensors, 2020, 20, 6542.	3.8	6
47	A reliability and performance GSPN-Based model for anti-collision RFID algorithms under noisy channels in industrial internet of things. Computers in Industry, 2021, 125, 103381.	9.9	6
48	A Multi-Tier Sensors-based Environmental Monitoring Approach to Assess the Quality of Bike Paths in Urban Areas. , 2020, , .		6
49	Centralized Algorithms for Redundant Coverage Maximization in Wireless Visual Sensor Networks. IEEE Latin America Transactions, 2016, 14, 3378-3384.	1.6	5
50	FoV-Based Quality Assessment and Optimization for Area Coverage in Wireless Visual Sensor Networks. IEEE Access, 2020, 8, 109568-109580.	4.2	5
51	Automatic Assignment of Emergency Vehicles in Response to Sensors-based Generated Alarms in Smart City Scenarios. , 2020, , .		5
52	Relevance-based balanced sink mobility in wireless visual sensor networks. , 2014, , .		4
53	Wireless visual sensor networks redeployment based on dependability optimization. , 2019, , .		4
54	A Survey on Transport Protocols for Wireless Multimedia Sensor Networks. KSII Transactions on Internet and Information Systems, 0, , .	0.3	4

#	Article	IF	Citations
55	An Optimization Approach for Emergency Vehicles Dispatching and Traffic Lights Adjustments in Response to Emergencies in Smart Cities. , 2021, , .		4
56	Energy-efficient visual monitoring based on the sensing relevancies of source nodes for wireless image sensor networks. , 2012, , .		3
57	Redundant Visual Coverage of Prioritized Targets in IoT Applications. , 2018, , .		3
58	Multiple Mobile Sinks in Event-based Wireless Sensor Networks Exploiting Traffic Conditions in Smart City Applications. , 2018 , , .		3
59	An Availability Metric and Optimization Algorithms for Simultaneous Coverage of Targets and Areas by Wireless Visual Sensor Networks. , 2019, , .		3
60	MSensorMob: A Multi-Sensors Hardware Framework to Support the Development of Adaptable Monitoring Units in Mobile Applications. , 2021, , .		3
61	A P2P Architecture to Support Mobile Real-Time Multimedia Communications. Journal of Multimedia, 2010, 5, .	0.3	3
62	Coverage-Aware Node-Disjoint Multipath Selection in Wireless Multimedia Sensor Networks. , 2011, , .		2
63	A semi-reliable energy-efficient retransmission mechanism based on the sensing relevancies of source nodes for wireless image sensor networks. , 2012, , .		2
64	Relevance-based partial reliability in wireless sensor networks. Eurasip Journal on Wireless Communications and Networking, 2014, 2014, .	2.4	2
65	QoE-aware multiple sinks mobility in wireless sensor networks. , 2015, , .		2
66	Multimedia Transmission in Wireless Sensor Networks. , 2018, , 33-51.		2
67	MovMedia. , 2008, , .		1
68	Expansion of the available use classes in IEEE 802.15.4 networks for usage in the industrial environment. , 2012, , .		1
69	Energy-efficient packet relaying based on the sensing relevancies of source nodes in visual sensor networks. , 2012, , .		1
70	Delay-aware DWT-based image transmission in wireless visual sensor networks. , 2013, , .		1
71	Partial energy-efficient hop-by-hop retransmission in wireless sensor networks. , 2013, , .		1
72	A geometrical approach to compute source prioritization based on target viewing in wireless visual sensor networks. , 2016, , .		1

#	Article	IF	CITATIONS
73	Efficient Processing of Spatio-Temporal-Textual Queries. , 2017, , .		1
74	Adaptive Sensing Relevance Exploiting Social Media Mining in Smart Cities., 2017,,.		1
7 5	On optimal deployment of industrial wireless sensor networks. , 2017, , .		1
76	On the Development of Visual Sensors with Raspberry Pi. , 2018, , .		1
77	A Mathematical Model to Evaluate Visual Sensing Coverage of Emergency Signs on Moving Vehicles. , 2021, , .		1
78	On the development of flexible mobile multi-sensor units based on open-source hardware platforms and a reference framework. HardwareX, 2021, 10, e00243.	2.2	1
79	Interpretação de conteúdo AJAX em páginas dinâmicas para suporte à localização de informações na web. , 2008, , .		O
80	Uma arquitetura P2P para suporte a aplicações multimÃdia em tempo real com requisitos de mobilidade. , 2008, , .		0
81	An experimental platform for evaluating low power wireless communication systems for industrial applications. , 2017, , .		O
82	Genetic Algorithm for the Nodes Deployment Problem in Industrial Wireless Sensor Networks. , 2018, , .		0
83	VisualCastalia: An Extension to the Castalia/OMNeT++ for Simulations of Image Transmissions in Wireless Sensor Networks. IEEE Latin America Transactions, 2018, 16, 1557-1564.	1.6	O
84	Visual Sensor Networks and Related Applications. Sensors, 2019, 19, 4960.	3.8	0
85	On the mathematical modelling of visual sensors when computing coverage metrics in camera-based sensing applications. , 2021, , .		O
86	MobSIP: A SIP extension to support application layer handover in realtime multimedia communications with mobility requirements. Scientia, 2009, 20, 119-128.	0.2	0
87	Um Protocolo Genérico Eficiente de Energia para Aplicações em Redes de Sensores sem Fio sem Restrição de Tempo de Resposta. Revista De Tecnologia Da Informação E Comunicação, 2015, 5, 8-15.	0.1	O
88	Uma Ferramenta para Suporte ao Ensino do Protocolo AODV. Revista De Ensino De Engenharia, 2015, 34, 71-81.	0.1	0
89	Multimedia Transmission in Wireless Sensor Networks. Advances in Multimedia and Interactive Technologies Book Series, 2016, , 230-248.	0.2	О
90	Simulating Image Communication over Multi-Hop Wireless Sensor Networks Using TOSSIM. International Journal of Digital Information and Wireless Communications, 2018, 8, 168-173.	0.2	O

#	Article	IF	CITATIONS
91	MobSink: a Visual Mobile Wireless Sensor Networks Positioning Simulator. , 0, , .		0
92	Desenvolvendo Sensores de VÃdeo para a Internet das Coisas com o Raspberry Pi., 0,, 117-152.		0
93	Um Modelo Matemático para Estimativas do Consumo de Energia em Redes de Sensores Visuais sem Fio. TeMa, 2019, 20, 257.	0.1	0
94	Toward Sustainable Cycling: Modelling and Visualization Issues of Cycle Paths for IoT-based Sensing. , 2021, , .		0
95	A Computer-Assisted Approach to Assess the Precision of the Reciprocating Angles and the Rotation Speeds of Endodontic Motors. Applied System Innovation, 2022, 5, 68.	4.6	0