Maria Lucia Angelotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9090764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pathology Lesion Patterns of Podocytopathies: How and why?. Frontiers in Cell and Developmental Biology, 2022, 10, 838272.	1.8	4
2	Imaging the kidney: from light to super-resolution microscopy. Nephrology Dialysis Transplantation, 2021, 36, 19-28.	0.4	15
3	Collapsing Glomerulopathy as a Complication of Type I Interferon–Mediated Glomerulopathy in a Patient With RNASEH2B-Related Aicardi-Goutières Syndrome. American Journal of Kidney Diseases, 2021, 78, 750-754.	2.1	11
4	FC 038CRESCENTS DERIVE FROM SINGLE PODOCYTE PROGENITORS AND A DRUG ENHANCING THEIR DIFFERENTIATION ATTENUATES RAPIDLY PROGRESSIVE GLOMERULONEPHRITIS. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
5	Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence. Cancers, 2021, 13, 4588.	1.7	24
6	Stimulated Expression of CXCL12 in Adrenocortical Carcinoma by the PPARgamma Ligand Rosiglitazone Impairs Cancer Progression. Journal of Personalized Medicine, 2021, 11, 1097.	1.1	6
7	Collecting duct cells show differential retinoic acid responses to acute versus chronic kidney injury stimuli. Scientific Reports, 2020, 10, 16683.	1.6	4
8	MO065TUBULAR EPITHELIAL CELL POLYPLOIDIZATION IS REQUIRED TO SURVIVE AKI BUT PROMOTES CKD DEVELOPMENT. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
9	Only Hyperuricemia with Crystalluria, but not Asymptomatic Hyperuricemia, Drives Progression of Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2773-2792.	3.0	66
10	MO060ACUTE KIDNEY INJURY PROMOTES DEVELOPMENT OF A PAPILLARY RENAL CELL ADENOMA-CARCINOMA SEQUENCE FROM RENAL PROGENITORS. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	5
11	Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Science Translational Medicine, 2020, 12, .	5.8	46
12	Drug Testing for Residual Progression of Diabetic Kidney Disease in Mice Beyond Therapy with Metformin, Ramipril, and Empagliflozin. Journal of the American Society of Nephrology: JASN, 2020, 31, 1729-1745.	3.0	20
13	Localization of Injury and Repair Pathways. , 2019, , 173-178.e2.		4
14	Surviving Acute Organ Failure: Cell Polyploidization and Progenitor Proliferation. Trends in Molecular Medicine, 2019, 25, 366-381.	3.5	64
15	Anti-fibrotic treatments: A review of clinical evidence. Matrix Biology, 2018, 68-69, 333-354.	1.5	49
16	Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nature Communications, 2018, 9, 1344.	5.8	185
17	FO014TUBULAR CELL HYPERTROPHY VIA ENDOCYCLE AND PROLIFERATION OF TUBULAR PROGENITORS ARE CENTRAL MECHANISMS OF RESPONSE AFTER AKI. Nephrology Dialysis Transplantation, 2018, 33, i7-i7.	0.4	0
18	SaO032PAPILLARY RENAL CELL CARCINOMA ORIGINATES FROM A POPULATION OF RENAL PROGENITOR CELLS AND IS PROMOTED BY ACUTE KIDNEY INJURY. Nephrology Dialysis Transplantation, 2018, 33, i328-i328.	0.4	0

#	Article	IF	CITATIONS
19	CXCL12 blockade preferentially regenerates lostÂpodocytes in cortical nephrons by targetingÂanÂintrinsic podocyte-progenitor feedback mechanism. Kidney International, 2018, 94, 1111-1126.	2.6	69
20	Regenerating the kidney using human pluripotent stem cells and renal progenitors. Expert Opinion on Biological Therapy, 2018, 18, 795-806.	1.4	20
21	Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. Journal of the American Society of Nephrology: JASN, 2017, 28, 1753-1768.	3.0	220
22	Principles of Kidney Regeneration. , 2017, , 973-988.		2
23	SP181PAX2+ PROGENITOR CELLS PLAY A KEY ROLE IN TUBULAR REGENERATION AFTER ACUTE KIDNEY INJURY. Nephrology Dialysis Transplantation, 2016, 31, i146-i146.	0.4	0
24	Next generation sequencing and functional analysis of patient urine renal progenitor-derived podocytes to unravel the diagnosis underlying refractory lupus nephritis. Nephrology Dialysis Transplantation, 2016, 31, 1541-1545.	0.4	11
25	Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders. Journal of the American Society of Nephrology: JASN, 2015, 26, 1961-1974.	3.0	74
26	Podocyte Regeneration Driven by Renal Progenitors Determines Glomerular Disease Remission and Can Be Pharmacologically Enhanced. Stem Cell Reports, 2015, 5, 248-263.	2.3	112
27	The Antiviral Cytokines IFN-α and IFN-β Modulate Parietal Epithelial Cells and Promote Podocyte Loss. American Journal of Pathology, 2013, 183, 431-440.	1.9	105
28	Proteinuria Impairs Podocyte Regeneration by Sequestering Retinoic Acid. Journal of the American Society of Nephrology: JASN, 2013, 24, 1756-1768.	3.0	116
29	Characterization of Renal Progenitors Committed Toward Tubular Lineage and Their Regenerative Potential in Renal Tubular Injury. Stem Cells, 2012, 30, 1714-1725.	1.4	280
30	Notch Activation Differentially Regulates Renal Progenitors Proliferation and Differentiation Toward the Podocyte Lineage in Glomerular Disorders. Stem Cells, 2010, 28, 1674-1685.	1.4	152
31	Novel Strategies of Regenerative Medicine Using Chemical Compounds. Current Medicinal Chemistry, 2010, 17, 4134-4149.	1.2	2
32	Only anti-CD133 antibodies recognizing the CD133/1 or the CD133/2 epitopes can identify human renal progenitors. Kidney International, 2010, 78, 620-621.	2.6	22
33	Renal Progenitor Cells Contribute to Hyperplastic Lesions of Podocytopathies and Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2593-2603.	3.0	173
34	Regeneration of Glomerular Podocytes by Human Renal Progenitors. Journal of the American Society of Nephrology: JASN, 2009, 20, 322-332.	3.0	483
35	Toll-Like Receptors 3 and 4 Are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells and Can Inhibit Their T-Cell Modulatory Activity by Impairing Notch Signaling. Stem Cells, 2008, 26, 279-289.	1.4	429
36	Essential but differential role for CXCR4 and CXCR7 in the therapeutic homingof human renal progenitor cells. Journal of Experimental Medicine, 2008, 205, 479-490.	4.2	245

#	Article	IF	CITATIONS
37	Regenerative Potential of Embryonic Renal Multipotent Progenitors in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2007, 18, 3128-3138.	3.0	194