
Andrea Rubini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9090686/publications.pdf Version: 2024-02-01

ANDREA RUBINI

#	Article	IF	CITATIONS
1	Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 2010, 464, 1033-1038.	27.8	641
2	Reevaluation of the Life Cycle of Tuber magnatum. Applied and Environmental Microbiology, 2006, 72, 2390-2393.	3.1	129
3	lsolation and characterization of <i>MAT</i> genes in the symbiotic ascomycete <i>Tuber melanosporum</i> . New Phytologist, 2011, 189, 710-722.	7.3	108
4	<i>Tuber melanosporum</i> : mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nurseryâ€inoculated host plants. New Phytologist, 2011, 189, 723-735.	7.3	104
5	Rapid molecular approach for a reliable identification of Tuber spp. ectomycorrhizae. FEMS Microbiology Ecology, 1999, 28, 23-30.	2.7	103
6	<i>Tuber melanosporum</i> outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytologist, 2008, 180, 466-478.	7.3	98
7	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	7.8	95
8	Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC Plant Biology, 2010, 10, 211.	3.6	88
9	Genetic and Phylogeographic Structures of the Symbiotic Fungus Tuber magnatum. Applied and Environmental Microbiology, 2005, 71, 6584-6589.	3.1	84
10	Fineâ€scale spatial genetic structure of the black truffle (<i>Tuber melanosporum</i>) investigated with neutral microsatellites and functional mating type genes. New Phytologist, 2013, 199, 176-187.	7.3	83
11	Typing Tuber melanosporum and Chinese black truffle species by molecular markers. FEMS Microbiology Letters, 2006, 153, 255-260.	1.8	82
12	The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. Journal of Experimental Botany, 2011, 62, 1189-1200.	4.8	82
13	The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecology, 2012, 5, 683-693.	1.6	72
14	Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers. Fungal Genetics and Biology, 2011, 48, 592-601.	2.1	67
15	Single step molecular characterization of morphologically similar black truffle species. FEMS Microbiology Letters, 1998, 164, 7-12.	1.8	64
16	Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycological Research, 2007, 111, 1450-1460.	2.5	61
17	Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum) Tj ETQq1	1 0.78432 2.0	l4rgBT /Ov€ 61
18	Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds. FEMS Microbiology Ecology, 2012, 81, 547-561.	2.7	47

Andrea Rubini

#	Article	IF	CITATIONS
19	Tuber aestivumandTuber uncinatum: two morphotypes or two species?. FEMS Microbiology Letters, 2004, 235, 109-115.	1.8	45
20	Morphological and molecular analyses of ectomycorrhizal diversity in a man-made T. melanosporum plantation: description of novel truffle-like morphotypes. Mycorrhiza, 2006, 16, 475-484.	2.8	44
21	Impact of the competition between mating types on the cultivation of Tuber melanosporum: Romeo and Juliet and the matter of space and time. Mycorrhiza, 2014, 24, 19-27.	2.8	41
22	Isolation and characterization of polymorphic microsatellite loci in white truffle (Tuber magnatum). Molecular Ecology Notes, 2004, 4, 116-118.	1.7	37
23	Troubles with truffles: unveiling more of their biology. New Phytologist, 2007, 174, 256-259.	7.3	36
24	Assessment of inter- and intra-specific variability in the main species ofBoletus eduliscomplex by ITS analysis. FEMS Microbiology Letters, 2005, 243, 411-416.	1.8	35
25	Identification and characterisation of human pathogenic filamentous fungi and susceptibility to <i>Thymus schimperi</i> essential oil. Mycoses, 2011, 54, e364-76.	4.0	35
26	Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biology, 2012, 116, 261-275.	2.5	34
27	Wild and cultivated mushrooms as a model of sustainable development. Plant Biosystems, 2013, 147, 226-236.	1.6	34
28	Morphological characterization of molecular-typed Tuber magnatum ectomycorrhizae. Mycorrhiza, 2001, 11, 179-185.	2.8	32
29	Mating Type Locus of Chinese Black Truffles Reveals Heterothallism and the Presence of Cryptic Species within the T. indicum Species Complex. PLoS ONE, 2013, 8, e82353.	2.5	26
30	Characterization of the reproductive mode and life cycle of the whitish truffle T. borchii. Mycorrhiza, 2016, 26, 515-527.	2.8	23
31	Tuber aestivum and Tuber uncinatum: two morphotypes or two species?. FEMS Microbiology Letters, 2004, 235, 109-115.	1.8	21
32	Cloning and characterization of two repeated sequences in the symbiotic fungus Tuber melanosporum Vitt FEMS Microbiology Ecology, 2000, 34, 139-146.	2.7	20
33	The AD-type ectomycorrhizas, one of the most common morphotypes present in truffle fields, result from fungi belonging to the Trichophaea woolhopeia species complex. Mycorrhiza, 2011, 21, 17-25.	2.8	19
34	Tuber magnatum: The Special One. What Makes It so Different from the Other Tuber spp.?. Soil Biology, 2016, , 87-103.	0.8	19
35	Macrofungi in Mediterranean maquis along seashore and altitudinal transects. Plant Biosystems, 2014, 148, 367-376.	1.6	15
36	Tmt1: the first LTR-retrotransposon from a Tuber spp Current Genetics, 2008, 53, 23-34.	1.7	13

ANDREA RUBINI

1.8

1

#	ARTICLE	IF	CITATIONS
37	Genetic Structure and Phylogeography of Tuber magnatum Populations. Diversity, 2020, 12, 44.	1.7	13
38	Novel morphological and genetic tools to discriminate species among the family Plumatellidae (Phylactolaemata, Bryozoa). Hydrobiologia, 2011, 664, 81-93.	2.0	12
39	High genetic and chemical diversity of wild hop populations from Central Italy with signals of a genetic structure influenced by both sexual and asexual reproduction. Plant Science, 2021, 304, 110794.	3.6	12
40	The Headspace Volatiles of the Asian Truffle <i>Tuber indicum</i> Cooke et Mass. Journal of Essential Oil Research, 2002, 14, 3-5.	2.7	10
41	Genomics of Tuber melanosporum: New Knowledge Concerning Reproductive Biology, Symbiosis, and Aroma Production. Soil Biology, 2012, , 57-72.	0.8	10
42	Ribosomal DNA polymorphisms reveal genetic structure and a phylogeographic pattern in the Burgundy truffle <i>Tuber aestivum</i> Vittad Mycologia, 2019, 111, 26-39.	1.9	10
43	Inventory, diversity and communities of macrofungi in the Collestrada forest (Umbria, central Italy). Plant Biosystems, 2016, 150, 1096-1105.	1.6	9
44	Wood identification of pile dwellings from the Bronze Age San Savino site (Lake Trasimeno, central) Tj ETQq0 0	0 rgBT /Ον 1.6	erlgck 10 Tf !
45	Overview of the Biological Activities of a Methanol Extract from Wild Red Belt Conk, Fomitopsis pinicola (Agaricomycetes), Fruiting Bodies from Central Italy. International Journal of Medicinal Mushrooms, 2018, 20, 1047-1063.	1.5	8
46	Diversity of Endophytic and Pathogenic Fungi of Saffron (Crocus sativus) Plants from Cultivation Sites in Italy. Diversity, 2021, 13, 535.	1.7	8
47	<i>Pestalotiopsis</i> Endophytes from Leaves of Two Orchid Species Collected in Costa Rica. Cryptogamie, Mycologie, 2011, 32, 315-321.	1.0	7
48	An assessment of red list data for the Pezizomycotina (Ascomycota): Umbria (Italy) as a test case. Plant Biosystems, 2018, 152, 1329-1337.	1.6	7
49	Rapid molecular approach for a reliable identification of Tuber spp. ectomycorrhizae. FEMS Microbiology Ecology, 1999, 28, 23-30.	2.7	7
50	Current knowledge of Umbrian macrofungi (central Italy). Plant Biosystems, 2017, 151, 915-923.	1.6	6
51	Single step molecular characterization of morphologically similar black truffle species. FEMS Microbiology Letters, 1998, 164, 7-12.	1.8	3
52	Genetic characterisation and agronomic and nutritional value of bitter vetch (Vicia ervilia), an under-utilised species suitable for low-input farming systems. Crop and Pasture Science, 2019, 70, 606.	1.5	2
53	Cloning and characterization of two repeated sequences in the symbiotic fungus Tuber melanosporum Vitt FEMS Microbiology Ecology, 2000, 34, 139-146.	2.7	1

⁵⁴ Typing Tuber melanosporum and Chinese black truffle species by molecular markers. FEMS Microbiology Letters, 1997, 153, 255-260.