Hojjat Naderi-Meshkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9090533/publications.pdf

Version: 2024-02-01

55 1,412 20 36 papers citations h-index g-index 2710

64 64 64 2710 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. Journal of Biomaterials Applications, 2011, 26, 383-417.	2.4	234
2	Chitosanâ€based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biology International, 2014, 38, 72-84.	3.0	113
3	Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy. Cell Biology International, 2015, 39, 23-34.	3.0	100
4	Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes. Materials Science and Engineering C, 2016, 66, 130-137.	7.3	89
5	Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Materials Science and Engineering C, 2019, 97, 67-77.	7.3	61
6	PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering. Journal of Biomedical Materials Research - Part A, 2016, 104, 2020-2028.	4.0	55
7	Injectable hydrogel delivery plus preconditioning of mesenchymal stem cells: exploitation of SDFâ€1/CXCR4 axis toward enhancing the efficacy of stem cells' homing. Cell Biology International, 2016, 40, 730-741.	3.0	53
8	Toward Community Standards and Software for Whole-Cell Modeling. IEEE Transactions on Biomedical Engineering, 2016, 63, 2007-2014.	4.2	51
9	Exosomal IncRNAs and cancer: connecting the missing links. Bioinformatics, 2019, 35, 352-360.	4.1	51
10	Bone defect healing is induced by collagen sponge/polyglycolic acid. Journal of Materials Science: Materials in Medicine, 2019, 30, 33.	3.6	49
11	Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. International Journal of Lower Extremity Wounds, 2019, 18, 247-261.	1.1	46
12	Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches. Journal of Materials Science: Materials in Medicine, 2017, 28, 14.	3.6	31
13	The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells, 2019, 8, 929.	4.1	28
14	Supportive properties of basement membrane layer of human amniotic membrane enable development of tissue engineering applications. Cell and Tissue Banking, 2018, 19, 357-371.	1.1	26
15	MicroRNA-499a-5p Promotes Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to Cardiomyocytes. Applied Biochemistry and Biotechnology, 2018, 186, 245-255.	2.9	26
16	Adipose tissueâ€derived mesenchymal stem cells and keratinocytes coâ€culture on gelatin/chitosan/βâ€glycerol phosphate nanoscaffold in skin regeneration. Cell Biology International, 2019, 43, 1365-1378.	3.0	26
17	Application of mesenchymal stem cells to enhance nonâ€union bone fracture healing. Journal of Biomedical Materials Research - Part A, 2019, 107, 301-311.	4.0	26
18	Chemokine Receptors Expression in MSCs: Comparative Analysis in Different Sources and Passages. Tissue Engineering and Regenerative Medicine, 2017, 14, 605-615.	3.7	25

#	Article	IF	CITATIONS
19	Mesenchymal stem cell based therapy for osteoâ€diseases. Cell Biology International, 2014, 38, 1081-1085.	3.0	22
20	Effect of bioactive glass nanoparticles on biological properties of PLGA/collagen scaffold. Progress in Biomaterials, 2018, 7, 111-119.	4.5	22
21	Long bone mesenchymal stem cells (Lb-MSCs): clinically reliable cells for osteo-diseases. Cell and Tissue Banking, 2017, 18, 489-500.	1.1	20
22	The RNA world in the 21st century—a systems approach to finding non-coding keys to clinical questions. Briefings in Bioinformatics, 2016, 17, 380-392.	6.5	19
23	Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors. Iranian Journal of Basic Medical Sciences, 2016, 19, 125-31.	1.0	18
24	The Endocrine Regulation of Stem Cells: Physiological Importance and Pharmacological Potentials for Cell-Based Therapy. Current Stem Cell Research and Therapy, 2016, 11, 19-34.	1.3	17
25	Overexpression of MicroRNA-148b-3p stimulates osteogenesis of human bone marrow-derived mesenchymal stem cells: the role of MicroRNA-148b-3p in osteogenesis. BMC Medical Genetics, 2019, 20, 117.	2.1	17
26	Hybrid chitosan–ßâ€glycerol phosphate–gelatin nanoâ€∮micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering. Biopolymers, 2016, 105, 163-175.	2.4	16
27	Cancer metastasis versus stem cell homing: Role of platelets. Journal of Cellular Physiology, 2018, 233, 9167-9178.	4.1	15
28	Cardiomyogenic differentiation of human adiposeâ€derived mesenchymal stem cells transduced with Tbx20 â€encoding lentiviral vectors. Journal of Cellular Biochemistry, 2018, 119, 6146-6153.	2.6	14
29	Cancer statistics in Iran: Towards finding priority for prevention and treatment. The Cancer Press, 2017, 3, 27.	0.1	12
30	Standardized <i>Sophora pachycarpa</i> Root Extract Enhances Osteogenic Differentiation in Adiposeâ€derived Human Mesenchymal Stem Cells. Phytotherapy Research, 2017, 31, 792-800.	5.8	10
31	Using paracrine effects of Ad-MSCs on keratinocyte cultivation and fabrication of epidermal sheets for improving clinical applications. Cell and Tissue Banking, 2018, 19, 531-547.	1.1	10
32	The effect of adrenocorticotropic hormone on alphaâ€2â€macroglobulin in osteoblasts derived from human mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2020, 24, 4784-4790.	3.6	10
33	Endothelial Cells Derived From Patients With Diabetic Macular Edema Recapitulate Clinical Evaluations of Anti-VEGF Responsiveness Through the Neuronal Pentraxin 2 Pathway. Diabetes, 2020, 69, 2170-2185.	0.6	9
34	effects of allogeneic mesenchymal stem cells in a rat model of acute ischemic kidney injury. Iranian Journal of Basic Medical Sciences, 2018, 21, 824-831.	1.0	9
35	Enhanced biological properties of collagen/chitosan-coated poly(ε-caprolactone) scaffold by surface modification with GHK-Cu peptide and 58S bioglass. Progress in Biomaterials, 2020, 9, 25-34.	4.5	8
36	Chemically primed bone-marrow derived mesenchymal stem cells show enhanced expression of chemokine receptors contributed to their migration capability. Iranian Journal of Basic Medical Sciences, 2016, 19, 14-9.	1.0	8

#	Article	IF	CITATIONS
37	Augmented migration of mesenchymal stem cells correlates with the subsidiary CXCR4 variant. Cell Adhesion and Migration, 2018, 12, 1-9.	2.7	7
38	Cardiogenic effects of characterized <i>Geum urbanum</i> extracts on adipose-derived human mesenchymal stem cells. Biochemistry and Cell Biology, 2018, 96, 610-618.	2.0	7
39	Adipocyte lineage differentiation potential of MSCs isolated from reaming material. Journal of Cellular Physiology, 2019, 234, 20066-20071.	4.1	7
40	Stem Cell Therapy for Neurodegenerative Diseases: Strategies for Regeneration against Degeneration. Cell Therapy and Regenerative Medicine Journal, 2016, 1, 3.	0.0	7
41	Induction of tenogenic differentiation of equine adipose-derived mesenchymal stem cells by platelet-derived growth factor-BB and growth differentiation factor-6. Molecular Biology Reports, 2020, 47, 6855-6862.	2.3	6
42	Comparison the effects of hypoxia-mimicking agents on migration-related signaling pathways in mesenchymal stem cells. Cell and Tissue Banking, 2020, 21, 643-653.	1.1	6
43	Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6. Cell and Tissue Banking, 2022, 23, 237-246.	1.1	5
44	T-Box20 inhibits osteogenic differentiation in adipose-derived human mesenchymal stem cells: the role of T-Box20 on osteogenesis. Journal of Biological Research, 2019, 26, 8.	2.1	4
45	CRISPR/Cas9 mediated GFPâ€human dentin matrix protein 1 (DMP1) promoter knockâ€in at the ROSA26 locus in mesenchymal stem cell for monitoring osteoblast differentiation. Journal of Gene Medicine, 2020, 22, e3288.	2.8	3
46	Critical Issues in Successful Production of Skin Substitutes for Wound Healing. Cell Therapy and Regenerative Medicine Journal, 2016, 1, 38.	0.0	3
47	Cytotoxicity and biocompatibility evaluation of chitosan-beta glycerol phosphate-hydroxyethyl cellulose hydrogel on adult rat liver for cell-based therapeutic applications. International Journal of Biomedical Engineering and Technology, 2013, 12, 228.	0.2	2
48	Stem Cell Therapy for Neurodegenerative Diseases: Strategies for Regeneration against Degeneration. Journal of Genes and Cells, 0, 3, 22.	1.0	2
49	Osteogenic lineage differentiation potential of long bone mesenchymal stem cells after crypreservation. Cytotherapy, 2018, 20, S29.	0.7	1
50	Commercialization of Stem Cell Therapeutic Research: Bridging a Big Gap. Journal of Genes and Cells, 2015, 1, 40.	1.0	1
51	Genetically Modified Human Adipose-Derived Mesenchymal Stem Cells Overexpressing CXCR4R334X, a Hyper Functional Mutant Receptor, Display Enhanced Migration. Cytotherapy, 2016, 18, S20.	0.7	O
52	Overexpression of Chemokine Receptors on Neural Stem Cells Pretreated with Valproic acid: Towards Improved Homing. Cell Therapy and Regenerative Medicine Journal, 2016, 1, 98.	0.0	0
53	Critical Issues in Successful Production of Skin Substitutes for Wound Healing. Journal of Genes and Cells, 0, 4, 10.	1.0	O
54	Overexpression of Chemokine Receptors on Neural Stem Cells Pretreated with Valproic acid: Towards Improved Homing. Journal of Genes and Cells, 0, 4, 33.	1.0	0

#	Article	IF	CITATIONS
55	Optimizing Lipofectamine LTX Complex and G-418 Concentration for Improvement of Transfection Efficiency in Human Mesenchymal Stem Cells Archives of Razi Institute, 2021, 76, 1315-1325.	0.5	o