J-A Olive

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/909014/publications.pdf

Version: 2024-02-01

35	827	17 h-index	28
papers	citations		g-index
48	48	48	993
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sensitivity of rift tectonics to global variability in the efficiency of river erosion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115077119.	7.1	6
2	Tectonic termination of oceanic detachment faults, with constraints on tectonic uplift and mass wasting related erosion rates. Earth and Planetary Science Letters, 2022, 584, 117449.	4.4	5
3	Assessing the impact of sedimentation on fault spacing at the Andaman Sea spreading center. Geology, 2021, 49, 447-451.	4.4	6
4	Coâ€location of the Downdip End of Seismic Coupling and the Continental Shelf Break. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB019589.	3.4	7
5	Quantification of Gravitational Mass Wasting and Controls on Submarine Scarp Morphology Along the Roseau Fault, Lesser Antilles. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005892.	2.8	4
6	Thermoâ€Mechanical State of Ultraslowâ€Spreading Ridges With a Transient Magma Supply. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020557.	3.4	7
7	Initiating Salt Tectonics by Tilting: Viscous Coupling Between a Tilted Salt Layer and Overlying Brittle Sediment. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021503.	3.4	3
8	Mid-Ocean Ridges and Their Geomorphological Features. , 2021, , .		2
9	Controls on the magmatic fraction of extension at mid-ocean ridges. Earth and Planetary Science Letters, 2020, 549, 116541.	4.4	28
10	Timeâ€Dependent Crustal Accretion on the Southeast Indian Ridge Revealed by Malaysia Airlines Flight MH370 Search. Geophysical Research Letters, 2020, 47, e2020GL087349.	4.0	7
11	Partially Locked Lowâ€Angle Normal Faults in Cohesive Upper Crust. Tectonics, 2020, 39, e2019TC005753.	2.8	4
12	Interseismic Loading of Subduction Megathrust Drives Longâ€Term Uplift in Northern Chile. Geophysical Research Letters, 2020, 47, e2019GL085377.	4.0	33
13	Seafloor expression of oceanic detachment faulting reflects gradients in mid-ocean ridge magma supply. Earth and Planetary Science Letters, 2019, 516, 176-189.	4.4	25
14	Causes of Oceanic Crustal Thickness Oscillations Along a 74â€M Midâ€Atlantic Ridge Flow Line. Geochemistry, Geophysics, Geosystems, 2019, 20, 6123-6139.	2.5	6
15	Controls on the seafloor exposure of detachment fault surfaces. Earth and Planetary Science Letters, 2019, 506, 381-387.	4.4	13
16	Depthâ€Dependent Permeability and Heat Output at Basaltâ€Hosted Hydrothermal Systems Across Midâ€Ocean Ridge Spreading Rates. Geochemistry, Geophysics, Geosystems, 2018, 19, 1259-1281.	2.5	16
17	Formation of the frontal thrust zone of accretionary wedges. Earth and Planetary Science Letters, 2018, 495, 87-100.	4.4	8
18	Smoke Without Fire: How Long Can Thermal Cracking Sustain Hydrothermal Circulation in the Absence of Magmatic Heat?. Journal of Geophysical Research: Solid Earth, 2018, 123, 4561-4581.	3.4	16

#	Article	IF	CITATIONS
19	Controls on Midâ€ocean Ridge Normal Fault Seismicity Across Spreading Rates From Rateâ€andâ€State Friction Models. Journal of Geophysical Research: Solid Earth, 2018, 123, 6719-6733.	3.4	6
20	Genesis of corrugated fault surfaces by strain localization recorded at oceanic detachments. Earth and Planetary Science Letters, 2018, 498, 116-128.	4.4	29
21	Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 2017, 18, 14	5 1 -1482.	94
22	When less water means more fire. Nature Geoscience, 2017, 10, 718-719.	12.9	0
23	Magmatic and tectonic extension at the Chile Ridge: Evidence for mantle controls on ridge segmentation. Geochemistry, Geophysics, Geosystems, 2016, 17, 2354-2373.	2.5	28
24	Dependence of seismic coupling on normal fault style along the ⟨scp⟩N⟨/scp⟩orthern ⟨scp⟩M⟨/scp⟩idâ€∢scp⟩A⟨/scp⟩tlantic ⟨scp⟩R⟨/scp⟩idge. Geochemistry, Geophysics, Geosystems, 2016, 17, 4128-4152.	2.5	30
25	First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history. Earth and Planetary Science Letters, 2016, 450, 96-107.	4.4	21
26	Response to Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply― Science, 2016, 352, 1405-1405.	12.6	9
27	The role of elasticity in simulating long-term tectonic extension. Geophysical Journal International, 2016, 205, 728-743.	2.4	21
28	Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 2015, 42, 4309-4317.	4.0	44
29	Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science, 2015, 350, 310-313.	12.6	65
30	Modes of extensional faulting controlled by surface processes. Geophysical Research Letters, 2014, 41, 6725-6733.	4.0	53
31	Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance. Earth and Planetary Science Letters, 2014, 391, 100-109.	4.4	33
32	Rapid rotation of normal faults due to flexural stresses: An explanation for the global distribution of normal fault dips. Journal of Geophysical Research: Solid Earth, 2014, 119, 3722-3739.	3.4	22
33	Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	47
34	Hydrothermally-induced melt lens cooling and segmentation along the axis of fast- and intermediate-spreading centers. Geophysical Research Letters, $2011,38,n/a-n/a$.	4.0	25
35	The structure of oceanic core complexes controlled by the depth distribution of magmaÂemplacement. Nature Geoscience, 2010, 3, 491-495.	12.9	104