
Kazuyoshi Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9090085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology. DNA Research, 2012, 19, 117-130.	3.4	266
2	Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochemical and Biophysical Research Communications, 2004, 320, 1175-1180.	2.1	186
3	The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nature Communications, 2015, 6, 8301.	12.8	159
4	Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle. Zoological Letters, 2016, 2, 3.	1.3	133
5	Biphasic and Dually Coordinated Expression of the Genes Encoding Major Shell Matrix Proteins in the Pearl Oyster Pinctada fucata. Marine Biotechnology, 2006, 8, 52-61.	2.4	126
6	<i>In vitro</i> regulation of CaCO ₃ crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Letters, 2008, 582, 591-596.	2.8	97
7	The Complete Primary Structure of Molluscan Shell Protein 1 (MSP-1), an Acidic Glycoprotein in the Shell Matrix of the Scallop Patinopecten yessoensis. Marine Biotechnology, 2001, 3, 362-369.	2.4	91
8	The Diversity of Shell Matrix Proteins: Genome-Wide Investigation of the Pearl Oyster, Pinctada fucata. Zoological Science, 2013, 30, 801.	0.7	71
9	Sclerite formation in the hydrothermal-vent "scaly-foot―gastropod—possible control of iron sulfide biomineralization by the animal. Earth and Planetary Science Letters, 2006, 242, 39-50.	4.4	60
10	The Mitochondrial Genome of the Brachiopod <i>Laqueus rubellus</i> . Genetics, 2000, 155, 245-259.	2.9	55
11	Novel Repetitive Structures, Deviant Protein-Encoding Sequences andUnidentified ORFs in the Mitochondrial Genome of the BrachiopodLingula anatina. Journal of Molecular Evolution, 2005, 61, 36-53.	1.8	46
12	Dual Gene Repertoires for Larval and Adult Shells Reveal Molecules Essential for Molluscan Shell Formation. Molecular Biology and Evolution, 2018, 35, 2751-2761.	8.9	43
13	Molecular phylogeny of acantharian and polycystine radiolarians based on ribosomal DNA sequences, and some comparisons with data from the fossil record. European Journal of Protistology, 2006, 42, 143-153.	1.5	40
14	Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Development Genes and Evolution, 2008, 218, 237-251.	0.9	39
15	Molecular Evolution and Functionally Important Structures of Molluscan Dermatopontin: Implications for the Origins of Molluscan Shell Matrix Proteins. Journal of Molecular Evolution, 2006, 62, 307-318.	1.8	36
16	Possible functions of Dpp in gastropod shell formation and shell coiling. Development Genes and Evolution, 2011, 221, 59-68.	0.9	36
17	PCR Survey of Hox Genes in the Crinoid and Ophiuroid: Evidence for Anterior Conservation and Posterior Expansion in the Echinoderm Hox Gene Cluster. Molecular Phylogenetics and Evolution, 2000, 14, 375-388.	2.7	35
18	Fossil intra-crystalline biomolecules of brachiopod shells: diagenesis and preserved geo-biological information. Organic Geochemistry, 1995, 23, 661-673.	1.8	34

Kazuyoshi Endo

#	Article	IF	CITATIONS
19	A Comparative Study of the Shell Matrix Protein Aspein in Pterioid Bivalves. Journal of Molecular Evolution, 2012, 75, 11-18.	1.8	34
20	Skeletal matrix proteins of invertebrate animals: Comparative analysis of their amino acid sequences. Paleontological Research, 2006, 10, 311-336.	1.0	30
21	Left-right asymmetric expression of dpp in the mantle of gastropods correlates with asymmetric shell coiling. EvoDevo, 2013, 4, 15.	3.2	26
22	Evolution of Hox genes in molluscs: a comparison among seven morphologically diverse classes. Journal of Molluscan Studies, 2006, 72, 259-266.	1.2	25
23	Insights into the Evolution of Shells and Love Darts of Land Snails Revealed from Their Matrix Proteins. Genome Biology and Evolution, 2019, 11, 380-397.	2.5	25
24	Proteome analysis of shell matrix proteins in the brachiopod Laqueus rubellus. Proteome Science, 2015, 13, 21.	1.7	24
25	A PCR Survey of Hox Genes in the Sea Star,Asterina minor. Molecular Phylogenetics and Evolution, 1997, 8, 218-224.	2.7	23
26	Mitochondrial gene order variation in the brachiopod Lingula anatina and its implications for mitochondrial evolution in lophotrochozoans. Marine Genomics, 2015, 24, 31-40.	1.1	20
27	Pinnotheres laquei Sakai (Decapoda: Pinnotheridae), a tiny crab commensal within the brachiopod Laqueus rubellus (Sowerby) (Terebratulida: Laqueidae). Journal of Paleontology, 1996, 70, 303-311.	0.8	17
28	An In-silico Genomic Survey to Annotate Genes Coding for Early Development-Relevant Signaling Molecules in the Pearl Oyster, Pinctada fucata. Zoological Science, 2013, 30, 877.	0.7	14
29	Functional shell matrix proteins tentatively identified by asymmetric snail shell morphology. Scientific Reports, 2020, 10, 9768.	3.3	13
30	Brachiopod shell spiral deviations (SSD): Implications for trace element proxies. Chemical Geology, 2014, 374-375, 13-24.	3.3	12
31	Immunological responses from brachiopod skeletal macromolecules; a new technique for assessing taxonomic relationships using shells. Lethaia, 1991, 24, 399-407.	1.4	10
32	Migration of brachiopod species in the North Atlantic in response to Holocene climatic change. Geology, 1991, 19, 1101.	4.4	10
33	Preservation of the shell matrix protein dermatopontin in 1500 year old land snail fossils from the Bonin islands. Organic Geochemistry, 2008, 39, 1742-1746.	1.8	9
34	Possible co-option of <i>engrailed</i> during brachiopod and mollusc shell development. Biology Letters, 2017, 13, 20170254.	2.3	9
35	Chemical basis of molluscan shell colors revealed with in situ microâ€Raman spectroscopy. Journal of Raman Spectroscopy, 2019, 50, 1700-1711.	2.5	9
36	Determination of paleoseasonality of fossil brachiopods using shell spiral deviations and chemical proxies. Palaeoworld, 2016, 25, 662-674.	1.1	7

Kazuyoshi Endo

#	Article	IF	CITATIONS
37	Hydrophilic Shell Matrix Proteins of Nautilus pompilius and the Identification of a Core Set of Conchiferan Domains. Genes, 2021, 12, 1925.	2.4	7
38	Initiating the Mollusk Genomics Annotation Community: Toward Creating the Complete Curated Gene-Set of the Japanese Pearl Oyster, <i>Pinctada fucata</i> . Zoological Science, 2013, 30, 794-796.	0.7	6
39	Stasis and diversity in living fossils: Species delimitation and evolution of lingulid brachiopods. Molecular Phylogenetics and Evolution, 2022, 175, 107460.	2.7	5
40	Phylogenetic positions of "pico-sized―radiolarians from middle layer waters of the tropical Pacific. Progress in Earth and Planetary Science, 2020, 7, .	3.0	4
41	Evolution of Epidermal Growth Factor (EGF)-like and Zona Pellucida Domains Containing Shell Matrix Proteins in Mollusks. Molecular Biology and Evolution, 2022, 39, .	8.9	4
42	Phylogenetic comparisons reveal mosaic histories of larval and adult shell matrix protein deployment in pteriomorph bivalves. Scientific Reports, 2020, 10, 22140.	3.3	3
43	Molecules and morphology — the practical approach. Lethaia, 1993, 26, 5-6.	1.4	2
44	Annotation of the Pearl Oyster Genome. Zoological Science, 2013, 30, 779-780.	0.7	2
45	Tuning of Calcite Crystallographic Orientation to Support Brachiopod Lophophore. Advanced Engineering Materials, 2018, 20, 1800191.	3.5	0
46	Evo-devo of Spiral Shell Growth in Gastropods. , 2015, , .		0