## Mads Sylvest Bergholt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089861/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Raman spectroscopy and regenerative medicine: a review. Npj Regenerative Medicine, 2017, 2, 12.                                                                                                                        | 5.2  | 147       |
| 2  | Fiberoptic Confocal Raman Spectroscopy for Real-Time In Vivo Diagnosis of Dysplasia in Barrett's<br>Esophagus. Gastroenterology, 2014, 146, 27-32.                                                                     | 1.3  | 119       |
| 3  | Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination. Journal of Biomedical Optics, 2012, 17, 1.                                                           | 2.6  | 115       |
| 4  | Quantitative volumetric Raman imaging of three dimensional cell cultures. Nature Communications, 2017, 8, 14843.                                                                                                       | 12.8 | 109       |
| 5  | Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage. ACS Central Science, 2016, 2, 885-895.                                                        | 11.3 | 103       |
| 6  | <i>In vivo</i> diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques. International Journal of Cancer, 2011, 128, 2673-2680.                                                        | 5.1  | 97        |
| 7  | Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. Journal of Biomedical Optics, 2011, 16, 037003.                     | 2.6  | 94        |
| 8  | Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nature<br>Communications, 2020, 11, 207.                                                                                     | 12.8 | 93        |
| 9  | Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer. Biosensors and Bioelectronics, 2011, 26, 4104-4110.                                              | 10.1 | 89        |
| 10 | Fiberâ€optic Raman spectroscopy probes gastric carcinogenesis <i>in vivo</i> at endoscopy. Journal of<br>Biophotonics, 2013, 6, 49-59.                                                                                 | 2.3  | 87        |
| 11 | Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach.<br>Analyst, The, 2010, 135, 3162.                                                                                      | 3.5  | 86        |
| 12 | Simultaneous fingerprint and highâ€wavenumber fiberâ€optic Raman spectroscopy enhances realâ€ŧime<br><i>in vivo</i> diagnosis of adenomatous polyps during colonoscopy. Journal of Biophotonics, 2016, 9,<br>333-342.  | 2.3  | 79        |
| 13 | In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy. Journal<br>of Biomedical Optics, 2010, 15, 037017.                                                                        | 2.6  | 77        |
| 14 | Raman Spectroscopy: Guiding Light for the Extracellular Matrix. Frontiers in Bioengineering and<br>Biotechnology, 2019, 7, 303.                                                                                        | 4.1  | 72        |
| 15 | Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue<br>Raman measurements at endoscopy. Optics Letters, 2013, 38, 2321.                                                  | 3.3  | 65        |
| 16 | Characterizing Variability of In Vivo Raman Spectroscopic Properties of Different Anatomical Sites of<br>Normal Colorectal Tissue towards Cancer Diagnosis at Colonoscopy. Analytical Chemistry, 2015, 87,<br>960-966. | 6.5  | 62        |
| 17 | Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Science Advances, 2017, 3, e1701156.                                                                 | 10.3 | 60        |
| 18 | Characterizing variability in <i>in vivo</i> Raman spectroscopic properties of different anatomical sites of normal tissue in the oral cavity. Journal of Raman Spectroscopy, 2012, 43, 255-262.                       | 2.5  | 56        |

MADS SYLVEST BERGHOLT

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Correlated Heterospectral Lipidomics for Biomolecular Profiling of Remyelination in Multiple<br>Sclerosis. ACS Central Science, 2018, 4, 39-51.                                                                       | 11.3 | 44        |
| 20 | Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state.<br>Science Advances, 2020, 6, eaay7608.                                                                             | 10.3 | 44        |
| 21 | Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic<br>Raman spectroscopy. Biomaterials, 2017, 140, 128-137.                                                            | 11.4 | 41        |
| 22 | High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy. Analytical<br>Chemistry, 2021, 93, 15850-15860.                                                                                       | 6.5  | 38        |
| 23 | Single Particle Automated Raman Trapping Analysis. Nature Communications, 2018, 9, 4256.                                                                                                                              | 12.8 | 37        |
| 24 | In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. Nature Communications, 2020, 11, 6172.                                                                                           | 12.8 | 36        |
| 25 | <i>In vivo</i> , real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx. Journal of Biomedical Optics, 2012, 17, 0770021.                                    | 2.6  | 32        |
| 26 | Quantification of C-Reactive protein in human blood plasma using near-infrared Raman spectroscopy.<br>Analyst, The, 2009, 134, 2123.                                                                                  | 3.5  | 26        |
| 27 | Quantitative multiâ€image analysis for biomedical Raman spectroscopic imaging. Journal of<br>Biophotonics, 2016, 9, 542-550.                                                                                          | 2.3  | 25        |
| 28 | Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for<br>real-time <i>in vivo</i> tissue Raman measurements at endoscopy. Journal of Biomedical Optics, 2013, 18,<br>030502. | 2.6  | 24        |
| 29 | Molecular imaging of extracellular vesicles <i>in vitro via</i> Raman metabolic labelling. Journal of<br>Materials Chemistry B, 2020, 8, 4447-4459.                                                                   | 5.8  | 18        |
| 30 | Multivariate Reference Technique for Quantitative Analysis of Fiber-Optic Tissue Raman Spectroscopy.<br>Analytical Chemistry, 2013, 85, 11297-11303.                                                                  | 6.5  | 14        |
| 31 | Integrated photodynamic Raman theranostic system for cancer diagnosis, treatment, and post-treatment molecular monitoring. Theranostics, 2021, 11, 2006-2019.                                                         | 10.0 | 13        |
| 32 | Image-guided Raman spectroscopy probe-tracking for tumor margin delineation. Journal of Biomedical<br>Optics, 2021, 26, .                                                                                             | 2.6  | 13        |
| 33 | Diagnosis of early stage nasopharyngeal carcinoma using ultraviolet autofluorescence<br>excitation–emission matrix spectroscopy and parallel factor analysis. Analyst, The, 2011, 136, 3896.                          | 3.5  | 11        |
| 34 | Multiplexed polarized hypodermic Raman needle probe for biostructural analysis of articular cartilage. Optics Letters, 2020, 45, 2890.                                                                                | 3.3  | 10        |
| 35 | Raman Endoscopy for Objective Diagnosis of Early Cancer in the Gastrointestinal System. , 2013, 01, .                                                                                                                 |      | 9         |
| 36 | Raman needle arthroscopy for in vivo molecular assessment of cartilage. Journal of Orthopaedic<br>Research, 2022, 40, 1338-1348.                                                                                      | 2.3  | 8         |

3

MADS SYLVEST BERGHOLT

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Real-time depth-resolved fiber optic Raman endoscopy forin vivodiagnosis of gastric precancer. , 2014, , ,                                                                                       |     | 7         |
| 38 | Complementary techniques to analyse pericellular matrix formation by human MSC within hyaluronic acid hydrogels. Materials Advances, 2020, 1, 2888-2896.                                         | 5.4 | 4         |
| 39 | In vivo Raman spectroscopy integrated with multimodal endoscopic imaging for early diagnosis of gastric dysplasia. , 2010, , .                                                                   |     | 3         |
| 40 | Real-time depth-resolved Raman endoscopy for <i>in vivo</i> diagnosis of dysplasia in Barrett's esophagus. Proceedings of SPIE, 2013, , .                                                        | 0.8 | 3         |
| 41 | Hybrid confocal Raman endomicroscopy for morpho-chemical tissue characterization. Biomedical Optics Express, 2022, 13, 2278.                                                                     | 2.9 | 2         |
| 42 | Sa1831 Image-Guided Raman Spectroscopy for Real-Time In Vivo Diagnosis of Barrett's Esophagus During<br>Endoscopic Examination. Gastroenterology, 2012, 142, S-336.                              | 1.3 | 1         |
| 43 | Moving Raman spectroscopy into real-time, online diagnosis and detection of precancer and cancerin vivoin the upper GI during clinical endoscopic examination. , 2013, , .                       |     | 1         |
| 44 | 36 Fiberoptic Confocal Raman Endoscopy for Enhancing Real-Time In Vivo Diagnosis of Gastric<br>Precancer. Gastroenterology, 2014, 146, S-10.                                                     | 1.3 | 1         |
| 45 | Simultaneous fingerprint and high-wavenumber Raman endoscopy for in vivo diagnosis of colorectal precancer. , 2015, , .                                                                          |     | 1         |
| 46 | Clinician engineers: The future of medical education. Medical Teacher, 2020, 42, 478-478.                                                                                                        | 1.8 | 1         |
| 47 | Multimodal endoscopic imaging and Raman spectroscopy for improving in vivo diagnosis of gastric malignancies during clinical gastroscopy. Proceedings of SPIE, 2010, , .                         | 0.8 | 0         |
| 48 | Image-Guided Raman Spectroscopy For In Vivo Diagnosis of Gastric Precancer At Gastroscopy. , 2010, , .                                                                                           |     | 0         |
| 49 | Detection of malignant lesions in vivo in the upper gastrointestinal tract using image-guided Raman endoscopy. , 2012, , .                                                                       |     | Ο         |
| 50 | Mo1647 Confocal Raman Spectroscopy for Real-Time In Vivo Detection of High-grade Dysplasia in<br>Barrett's Esophagus During Endoscopic Examination. Gastrointestinal Endoscopy, 2013, 77, AB457. | 1.0 | 0         |
| 51 | A novel broadband Raman endoscopy for <i>in vivo</i> diagnosis of intestinal metaplasia in the stomach. Proceedings of SPIE, 2015, , .                                                           | 0.8 | Ο         |
| 52 | Multimodal endoscopic imaging and Raman spectroscopy for improving in vivo diagnosis of gastric malignancies during clinical gastroscopy. , 2010, , .                                            |     | 0         |
| 53 | Clinician engineers – Re-injecting the thinking into medicine. Asia Pacific Scholar, 2020, 5, 48-50.<br>                                                                                         | 0.4 | 0         |