Baojing Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089607/publications.pdf Version: 2024-02-01

RAQUNC CU

#	Article	IF	CITATIONS
1	Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7010-7015.	3.3	455
2	Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8792-8797.	3.3	430
3	Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change, 2013, 23, 1112-1121.	3.6	289
4	Reducing China's fertilizer use by increasing farm size. Global Environmental Change, 2016, 41, 26-32.	3.6	257
5	Atmospheric Reactive Nitrogen in China: Sources, Recent Trends, and Damage Costs. Environmental Science & Technology, 2012, 46, 9420-9427.	4.6	204
6	The impact of farm size on agricultural sustainability. Journal of Cleaner Production, 2019, 220, 357-367.	4.6	191
7	Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM _{2.5} air pollution. Science, 2021, 374, 758-762.	6.0	191
8	PM2.5 pollution is substantially affected by ammonia emissions in China. Environmental Pollution, 2016, 218, 86-94.	3.7	183
9	Plastic pollution in croplands threatens longâ€ŧerm food security. Global Change Biology, 2020, 26, 3356-3367.	4.2	177
10	Ammonia Emissions May Be Substantially Underestimated in China. Environmental Science & Technology, 2017, 51, 12089-12096.	4.6	160
11	Urbanization can benefit agricultural production with large-scale farming in China. Nature Food, 2021, 2, 183-191.	6.2	152
12	Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016, 6, 25088.	1.6	145
13	Decoupling livestock and crop production at the household level in China. Nature Sustainability, 2021, 4, 48-55.	11.5	126
14	Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resources, Conservation and Recycling, 2019, 144, 65-73.	5.3	124
15	Nitrogen Footprint in China: Food, Energy, and Nonfood Goods. Environmental Science & Technology, 2013, 47, 9217-9224.	4.6	122
16	A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future, 2019, 7, 865-872.	2.4	122
17	An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environment International, 2019, 133, 105239.	4.8	111
18	Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply?. Frontiers in Ecology and the Environment, 2013, 11, 43-49.	1.9	110

#	Article	IF	CITATIONS
19	Agricultural ammonia emissions contribute to China's urban air pollution. Frontiers in Ecology and the Environment, 2014, 12, 265-266.	1.9	103
20	Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio, 2017, 46, 129-142.	2.8	102
21	Urban rivers as hotspots of regional nitrogen pollution. Environmental Pollution, 2015, 205, 139-144.	3.7	100
22	Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution, 2018, 235, 482-488.	3.7	98
23	Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China. Ecological Economics, 2011, 70, 740-748.	2.9	95
24	Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nature Communications, 2020, 11, 4357.	5.8	95
25	Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food, 2021, 2, 1014-1022.	6.2	92
26	Constructed wetlands as biofuel productionÂsystems. Nature Climate Change, 2012, 2, 190-194.	8.1	90
27	Four steps to food security for swelling cities. Nature, 2019, 566, 31-33.	13.7	89
28	The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China. Environmental Pollution, 2012, 171, 30-37.	3.7	81
29	Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology, 2018, 24, 5590-5606.	4.2	81
30	Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture, Ecosystems and Environment, 2018, 265, 8-14.	2.5	80
31	Fertilizer overuse in Chinese smallholders due to lack of fixed inputs. Journal of Environmental Management, 2021, 293, 112913.	3.8	73
32	Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Regional Environmental Change, 2017, 17, 1217-1227.	1.4	67
33	Spatial–temporal patterns of inorganic nitrogen air concentrations and deposition in eastern China. Atmospheric Chemistry and Physics, 2018, 18, 10931-10954.	1.9	65
34	The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports, 2013, 3, 2579.	1.6	64
35	Quantifying carbon storage for tea plantations in China. Agriculture, Ecosystems and Environment, 2011, 141, 390-398.	2.5	63
36	Beef and coal are key drivers of Australia's high nitrogen footprint. Scientific Reports, 2016, 6, 39644.	1.6	51

#	Article	lF	CITATIONS
37	Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production, 2022, 360, 132180.	4.6	49
38	Detection and attribution of nitrogen runoff trend in China's croplands. Environmental Pollution, 2018, 234, 270-278.	3.7	47
39	Plant species richness enhances nitrous oxide emissions in microcosms of constructed wetlands. Ecological Engineering, 2014, 64, 108-115.	1.6	43
40	Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environmental Science and Pollution Research, 2019, 26, 464-472.	2.7	41
41	Positive effects of plant diversity on nitrogen removal in microcosms of constructed wetlands with high ammonium loading. Ecological Engineering, 2015, 82, 614-623.	1.6	39
42	Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nature Food, 2022, 3, 161-168.	6.2	39
43	Anthropogenic modification of the nitrogen cycling within the Greater Hangzhou Area system, China. Ecological Applications, 2009, 19, 974-988.	1.8	37
44	The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms. Atmospheric Environment, 2013, 77, 544-547.	1.9	37
45	Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environmental Change, 2018, 48, 56-66.	3.6	33
46	Increasing importance of ammonia emission abatement in PM2.5 pollution control. Science Bulletin, 2022, 67, 1745-1749.	4.3	33
47	Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nature Food, 2022, 3, 122-132.	6.2	30
48	Socioeconomic constraints on the technological choices in rural sewage treatment. Environmental Science and Pollution Research, 2016, 23, 20360-20367.	2.7	29
49	The role of technology and policy in mitigating regional nitrogen pollution. Environmental Research Letters, 2011, 6, 014011.	2.2	28
50	Assessment of private economic benefits and positive environmental externalities of tea plantation in China. Environmental Monitoring and Assessment, 2013, 185, 8501-8516.	1.3	28
51	Toward a Generic Analytical Framework for Sustainable Nitrogen Management: Application for China. Environmental Science & Technology, 2019, 53, 1109-1118.	4.6	27
52	Virtual nitrogen factors and nitrogen footprints associated with nitrogen loss and food wastage of China's main food crops. Environmental Research Letters, 2018, 13, 014017.	2.2	26
53	Non-linear increase of respiratory diseases and their costs under severe air pollution. Environmental Pollution, 2017, 224, 631-637.	3.7	25
54	Reactive nitrogen spatial intensity (NrSI): A new indicator for environmental sustainability. Global Environmental Change, 2018, 52, 101-107.	3.6	25

#	Article	IF	CITATIONS
55	A Credit System to Solve Agricultural Nitrogen Pollution. Innovation(China), 2021, 2, 100079.	5.2	25
56	Water use efficiency in response to interannual variations in flux-based photosynthetic onset in temperate deciduous broadleaf forests. Ecological Indicators, 2017, 79, 122-127.	2.6	22
57	An empirical model to estimate ammonia emission from cropland fertilization in China. Environmental Pollution, 2021, 288, 117982.	3.7	22
58	Land use mediates riverine nitrogen export under the dominant influence of human activities. Environmental Research Letters, 2017, 12, 094018.	2.2	21
59	Recoupling livestock and crops. Nature Food, 2022, 3, 102-103.	6.2	20
60	Socioeconomic barriers of nitrogen management for agricultural and environmental sustainability. Agriculture, Ecosystems and Environment, 2022, 333, 107950.	2.5	20
61	Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis. Environmental Pollution, 2011, 159, 1427-1434.	3.7	18
62	Role of Management Strategies and Environmental Factors in Determining the Emissions of Biogenic Volatile Organic Compounds from Urban Greenspaces. Environmental Science & Technology, 2014, 48, 6237-6246.	4.6	18
63	Rapid growth of industrial nitrogen fluxes in China: Driving forces and consequences. Science China Earth Sciences, 2013, 56, 662-670.	2.3	17
64	Overcoming socioeconomic barriers to reduce agricultural ammonia emission in China. Environmental Science and Pollution Research, 2020, 27, 25813-25817.	2.7	17
65	Reforming smallholder farms to mitigate agricultural pollution. Environmental Science and Pollution Research, 2022, 29, 13869-13880.	2.7	17
66	Ammonia Emissions from Croplands Decrease with Farm Size in China. Environmental Science & Technology, 2022, 56, 9915-9923.	4.6	17
67	Characterization of haze episodes and factors contributing to their formation using a panel model. Chemosphere, 2016, 149, 320-327.	4.2	16
68	Utilization of waste nitrogen for biofuel production in China. Renewable and Sustainable Energy Reviews, 2011, 15, 4910-4916.	8.2	15
69	Soil-Food-Environment-Health Nexus for Sustainable Development. Research, 2021, 2021, 9804807.	2.8	15
70	Agricultural carbon flux changes driven by intensive plastic greenhouse cultivation in five climatic regions of China. Journal of Cleaner Production, 2015, 95, 265-272.	4.6	14
71	The nitrogen footprint for an Australian university: Institutional change for corporate sustainability. Journal of Cleaner Production, 2018, 197, 534-541.	4.6	14
72	Weak indirect effects inherent to nitrogen biogeochemical cycling within anthropogenic ecosystems: A network environ analysis. Ecological Modelling, 2011, 222, 3277-3284.	1.2	12

#	Article	IF	CITATIONS
73	A high-resolution map of reactive nitrogen inputs to China. Scientific Data, 2020, 7, 379.	2.4	12
74	Uncertainty of nitrogen budget in China. Environmental Pollution, 2021, 286, 117216.	3.7	11
75	Applying C:N ratio to assess the rationality of estimates of carbon sequestration in terrestrial ecosystems and nitrogen budgets. , 2022, 1, .		11
76	Plant diversity improves the effluent quality and stability of floating constructed wetlands under increased ammonium/nitrate ratio in influent. Journal of Environmental Management, 2020, 266, 110607.	3.8	9
77	The Warming Climate Aggravates Atmospheric Nitrogen Pollution in Australia. Research, 2021, 2021, 9804583.	2.8	9
78	NCNA: Integrated platform for constructing, visualizing, analyzing and sharing human-mediated nitrogen biogeochemical networks. Environmental Modelling and Software, 2011, 26, 678-679.	1.9	8
79	Concurrent and lagged effects of spring greening on seasonal carbon gain and water loss across the Northern Hemisphere. International Journal of Biometeorology, 2020, 64, 1343-1354.	1.3	6
80	Human-caused increases in reactive nitrogen burial in sediment of global lakes. Innovation(China), 2021, 2, 100158.	5.2	6
81	Pollution controls in Lake Tai with the reduction of the watershed nitrogen footprint. Journal of Cleaner Production, 2022, 332, 130132.	4.6	5
82	Particle toxicity's role in air pollution—Response. Science, 2022, 375, 506-507.	6.0	2
83	Reactive Nitrogen Budgets in China. , 2020, , 87-109.		1
84	Costs and benefits of ammonia abatement in Australia. Resources, Conservation and Recycling, 2022, 182, 106318.	5.3	1
85	Dry Climate Aggravates Riverine Nitrogen Pollution in Australia by Water Volume Reduction. Environmental Science & Technology, 2021, 55, 16455-16464.	4.6	1