
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089531/publications.pdf Version: 2024-02-01

SHIN-ICHI TODOROKI

#	Article	IF	CITATIONS
1	Relation between the Ω6intensity parameter of Er3+ions and the151Eu isomer shift in oxide glasses. Journal of Applied Physics, 1993, 73, 8451-8454.	2.5	212
2	Room-temperature persistent hole burning of Sm^2+ in oxide glasses. Optics Letters, 1993, 18, 1586.	3.3	170
3	Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties. Journal of Non-Crystalline Solids, 2003, 325, 85-102.	3.1	147
4	Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate. Journal of the Electrochemical Society, 2002, 149, B321.	2.9	144
5	Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and Solâ^'Gel Process. Chemistry of Materials, 2002, 14, 266-272.	6.7	133
6	Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition. Chemistry of Materials, 2002, 14, 4595-4602.	6.7	128
7	Phonon sideband of Eu3+ in sodium borate glasses. Journal of Non-Crystalline Solids, 1990, 122, 59-65.	3.1	108
8	Origin of periodic void formation during fiber fuse. Optics Express, 2005, 13, 6381.	3.4	72
9	Phonon sideband spectra and local structure around Eu3+ ions in sodium silicate glasses. Journal of Non-Crystalline Solids, 1991, 136, 213-218.	3.1	63
10	Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition. Electrochimica Acta, 2003, 48, 3147-3153.	5.2	63
11	Origin of inhomogeneous linewidth of Eu3+fluorescence in several oxide glasses. Journal of Applied Physics, 1992, 72, 5853-5860.	2.5	61
12	Optical properties of GeO_2 glass and optical fibers. Applied Optics, 1997, 36, 6809.	2.1	59
13	Local structure around rare-earth ions in indium- and lead-based fluoride glasses with high upconversion efficiency. Journal of Non-Crystalline Solids, 1992, 143, 46-51.	3.1	54
14	CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber. Journal of Non-Crystalline Solids, 1992, 143, 40-45.	3.1	50
15	Refractive index and material dispersions of multi-component oxide glasses. Journal of Non-Crystalline Solids, 1997, 210, 155-162.	3.1	50
16	Localized hyperpolarizability approach to the origin of nonlinear optical properties inTeO2-based materials. Physical Review B, 2004, 70, .	3.2	43
17	Investigation of glass formation and color properties in the P2O5–TeO2–ZnO system. Journal of Non-Crystalline Solids, 2003, 324, 58-66.	3.1	42
18	Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses. Journal of Luminescence, 1993, 55, 217-219.	3.1	41

#	Article	IF	CITATIONS
19	Observation of polymer optical fiber fuse. Applied Physics Letters, 2014, 104, 043302.	3.3	41
20	Spectral properties of Er 3+ doped oxyfluoride tellurite glasses. Journal of Non-Crystalline Solids, 2003, 326-327, 359-363.	3.1	38
21	Viscosity of silica core optical fiber. Journal of Non-Crystalline Solids, 1999, 244, 232-237.	3.1	34
22	High temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses. Journal of Non-Crystalline Solids, 1993, 152, 267-269.	3.1	32
23	In-SituObservation of Fiber-Fuse Propagation. Japanese Journal of Applied Physics, 2005, 44, 4022-4024.	1.5	32
24	Rayleigh scattering of silica core optical fiber after heat treatment. Applied Optics, 1998, 37, 7708.	2.1	26
25	Light Scattering Properties in Ternary Germanate Glasses. Japanese Journal of Applied Physics, 1995, 34, 145-150.	1.5	25
26	Alkali Magnesium/Zinc Silicate Glasses with Low Rayleigh Scattering. Journal of the American Ceramic Society, 1995, 78, 2566-2568.	3.8	23
27	Fabrication of oxide nanostructures on glass by aluminum anodization and sol–gel process. Surface and Coatings Technology, 2003, 169-170, 190-194.	4.8	22
28	Transient propagation mode of fiber fuse leaving no voids. Optics Express, 2005, 13, 9248.	3.4	22
29	Fabrication of Hierarchically Porous Spherical Particles by Assembling Mesoporous Silica Nanoparticles via Spray Drying. Journal of Nanoscience and Nanotechnology, 2008, 8, 3101-3105.	0.9	22
30	Fiber Fuse. NIMS Monographs, 2014, , .	0.3	22
31	Propagation mechanism of polymer optical fiber fuse. Scientific Reports, 2015, 4, 4800.	3.3	22
32	Rayleigh scattering in silica glass with heat treatment. Journal of Non-Crystalline Solids, 1997, 220, 178-186.	3.1	21
33	Animation of fiber fuse damage, demonstrating periodic void formation. Optics Letters, 2005, 30, 2551.	3.3	21
34	Rayleigh Scattering in Silica Glasses. Journal of the American Ceramic Society, 1996, 79, 2821-2824.	3.8	20
35	Phonon Sideband Spectra and Local Structure around Eu ³⁺ Ions in Aluminosilicate Glasses. Journal of the Ceramic Society of Japan, 1993, 101, 1065-1067.	1.3	18
36	Spherical Mesoporous Silica Particles with Titanium Dioxide Nanoparticles by an Aerosol-assisted Coassembly. Chemistry Letters, 2008, 37, 72-73.	1.3	18

#	Article	IF	CITATIONS
37	Industrial mass-production of mesoporous silica spherical particles by a spray-drying process: investigation of synthetic conditions. Journal of the Ceramic Society of Japan, 2009, 117, 198-202.	1.1	18
38	Origin of inhomogeneous linewidth of Eu3+ fluorescence in phosphate and borophosphate glasses. Journal of Non-Crystalline Solids, 1994, 175, 263-269.	3.1	17
39	Non-linear optical properties of TeO2-based glasses: ab initio static finite-field and time-dependent calculations. Journal of Non-Crystalline Solids, 2004, 345-346, 730-733.	3.1	17
40	Blog-based research notebook: Personal informatics workbench for high-throughput experimentation. Applied Surface Science, 2006, 252, 2640-2645.	6.1	16
41	Combinatorial evaluation system for thermal properties of glass materials using a vertical furnace with temperature gradient. Applied Surface Science, 2002, 189, 241-244.	6.1	15
42	Advanced approaches to functional glasses. Journal of Non-Crystalline Solids, 2006, 352, 632-645.	3.1	12
43	Quantitative evaluation of fiber fuse initiation with exposure to arc discharge provided by a fusion splicer. Scientific Reports, 2016, 6, 25366.	3.3	11
44	Fiber Fuse Propagation Behavior. , 0, , .		10
45	Evaluation of Optical Glasses for Low-Loss Fibers: Optical Attenuation and Fiber Drawing Ability. Japanese Journal of Applied Physics, 1995, 34, 3128-3133.	1.5	9
46	The apparatus for automatic batch melting in the crucibles. Applied Surface Science, 2002, 189, 234-240.	6.1	9
47	Optical Fuse by Carbon-Coated TeO2Glass Segment Inserted in Silica Glass Optical Fiber Circuit. Japanese Journal of Applied Physics, 2004, 43, L256-L257.	1.5	9
48	Threshold power reduction of fiber fuse propagation through a white tight-buffered single-mode optical fiber. IEICE Electronics Express, 2011, 8, 1978-1982.	0.8	9
49	Fiber Fuse Propagation Modes in Typical Single-mode Fibers. , 2013, , .		9
50	Phonon sideband spectra and local structure around Eu3+ ions in sodium germanate glasses. Journal of Alloys and Compounds, 1993, 193, 207-209.	5.5	8
51	Refractive Index Dispersion in Ternary Germanate Glasses. Japanese Journal of Applied Physics, 1995, 34, 5615-5620.	1.5	8
52	Special Issue Ceramics Integration. Formation of Optical Coupling Structure between Two Ends of Silica Glass Optical Fibers by Inserting Tellurite Glass Melt Journal of the Ceramic Society of Japan, 2002, 110, 476-478.	1,3	8
53	Combinatorial fluorescence lifetime measuring system for developing Er-doped transparent glass ceramics. Applied Surface Science, 2004, 223, 39-43.	6.1	8
54	Combinatorial glass research system. Applied Surface Science, 2004, 223, 233-237.	6.1	8

#	Article	IF	CITATIONS
55	Refractive Index Dispersion of Sodium Magnesium Silicate Glasses for Ultralowâ€Loss Fibers. Journal of the American Ceramic Society, 1997, 80, 313-316.	3.8	8
56	In Situ Observation of Modulated Light Emission of Fiber Fuse Synchronized with Void Train over Hetero-Core Splice Point. PLoS ONE, 2008, 3, e3276.	2.5	8
57	A study of the local structure around Eu3+ ions in oxide glasses using Mössbauer spectroscopy. Nuclear Instruments & Methods in Physics Research B, 1993, 76, 76-77.	1.4	7
58	Optical Properties of Na2O–MgO–SiO2Optical Fiber. Optical Fiber Technology, 1998, 4, 328-337.	2.7	7
59	Rayleigh Scattering of Silica Glass and Silica Fibers with Heat Treatment. Japanese Journal of Applied Physics, 1998, 37, 56.	1.5	7
60	<i>In Situ</i> High-Temperature X-ray Observations of Crystallization of Zinctellurite Glass. Materials Transactions, 2002, 43, 355-358.	1.2	7
61	Combinatorial methodologies for determination of glass-forming region. Applied Surface Science, 2002, 189, 327-332.	6.1	7
62	Smart photonic coating for civil engineering field: for a future inspection technology on concrete bridge. Proceedings of SPIE, 2017, , .	0.8	7
63	Rayleigh Scattering and Fictive Temperature in VAD Silica Class with Heat Treatment. Journal of the Ceramic Society of Japan, 1997, 105, 377-380.	1.3	6
64	Optical properties in ternary germanate glasses. Journal of Non-Crystalline Solids, 1996, 196, 58-62.	3.1	5
65	Sodium Magnesium Silicate Oxyfluoride Glass with Low Rayleigh Scattering. Journal of the Ceramic Society of Japan, 1996, 104, 808-811.	1.3	5
66	Quantitative Evaluation of Fiber Fuse Initiation Probability in Typical Single-mode Fibers. , 2015, , .		5
67	Evaluation of Critical Cooling Rate for 30Na₂Oâ<10MgOâ<60SiO₂ Glass Based on Viscosity. Journal of the Ceramic Society of Japan, 1996, 104, 405-408.	f 1.3	4
68	Effect of Si addition on In2O3 crystallization in soda-boro-aluminosilicate glass. Journal of Non-Crystalline Solids, 2005, 351, 1701-1704.	3.1	4
69	Effect of F-Doping on Optical and Thermal Properties of Soda Magnesium Silicate Glasses for Ultralow-Loss Fibers. Japanese Journal of Applied Physics, 1996, 35, 5374-5378.	1.5	3
70	Low-loss optical coupling structure between two ends of silica glass optical fibers by inserting TeO2 melt. Journal of Non-Crystalline Solids, 2003, 328, 237-240.	3.1	3
71	Observation of Blowing out in Low Loss Passive Optical Fuse Formed in Silica Glass Optical Fiber Circuit. Japanese Journal of Applied Physics, 2004, 43, L728-L730.	1.5	3

3

#	Article	IF	CITATIONS
73	Combinatorial approach to new glasses. Applied Surface Science, 2006, 252, 2450-2455.	6.1	3
74	Fluorescence Properties of Eu3+ Ions Doped in Several Oxide Glasses Zairyo/Journal of the Society of Materials Science, Japan, 1992, 41, 583-587.	0.2	3
75	Partially Self-pumped Fiber Fuse Propagation through a White Tight-buffered Single-mode Optical Fiber. , 2012, , .		3
76	Optimization of host glass composition to make soda borosilicate glasses doped with reduced rare earth ions. Applied Surface Science, 2004, 223, 238-240.	6.1	2
77	Silica Glass Optical Fiber and Fiber Fuse. NIMS Monographs, 2014, , 1-16.	0.3	2
78	Development of the Combinatorial Glass Formation Tester. Materials Research Society Symposia Proceedings, 2001, 700, 661.	0.1	1
79	Rapid and Quantitative Determination of Crystallization Tendency of Zinc Tellurite Glass Melt by Using Temperature-Gradient Furnace. Materials Research Society Symposia Proceedings, 2001, 700, 671.	0.1	1
80	Glass Formation and Reddish Coloring Properties in Zinc Phosphotellurite Glass Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	1
81	<title>Ultrahigh-speed videography of fiber fuse propogation: a tool for studying void formation</title> . , 2006, , .		1
82	Implementation and outlook of a new repository system at the National Institute of Materials Science. Journal of Information Processing and Management, 2009, 51, 888-901.	0.0	1
83	Evaluation of Optical Characteristics of Faraday Glass Multilayer Films Journal of the Ceramic Society of Japan, 1999, 107, 872-874.	1.3	Ο
84	Management of Combinatorially Acquired Multi-dimensional Data through Object-Oriented Virtual Sample Library. Materials Research Society Symposia Proceedings, 2003, 804, 205.	0.1	0
85	Refractive Index Reduction at the Surface of Co/Cu-Doped Silicate Glasses Induced by Femto-Second Laser Irradiation. Journal of the Ceramic Society of Japan, 2005, 113, 308-311.	1.3	Ο
86	Object-oriented virtual sample library: a container of multi-dimensional data for acquisition, visualization and sharing. Measurement Science and Technology, 2005, 16, 285-291.	2.6	0
87	Heat-Induced Breakage of an Optical Circuit at a TeO2 Glass Bridge Linking Silica Glass Fibers. Journal of the Ceramic Society of Japan, 2006, 114, 709-712.	1.3	Ο
88	First observation of fiber fuse phenomenon in polymer optical fibers. , 2014, , .		0
89	Plastic optical fiber fuse and its impact on sensing applications. Proceedings of SPIE, 2017, , .	0.8	0
90	In situ high-temperature X-ray observation of crystallization during the fabrication of non-silica(20ZnO 80TeO2) glass-preform of optical devices Journal of Advanced Science, 2001, 13, 367-370.	0.1	0

6

#	Article	IF	CITATIONS
91	Two Topics on Optical Fiber with Holes : Holey Fiber and Fiber Fuse. Journal of Fiber Science and Technology, 2008, 64, P.318-P.321.	0.0	0
92	Self-archiving as researchers' outreach activity. Journal of Information Processing and Management, 2012, 55, 79-86.	0.0	0
93	Periodic Void Formation. NIMS Monographs, 2014, , 25-35.	0.3	0
94	Delayed Response of Silica Melt to Pump Modulation. NIMS Monographs, 2014, , 37-48.	0.3	0
95	Fiber Fuse Propagation Modes. NIMS Monographs, 2014, , 17-24.	0.3	0
96	Weatherability improvement of strain imaging sheet to use in real field for infrastructure inspection technology. , 2019, , .		0
97	IoT-powered remote sensing system and portable tools for real-time evaluation of strain imaging sheets affixed to old outdoor structures. , 2019, , .		0