Christopher I Pakes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089467/publications.pdf

Version: 2024-02-01

		471061	433756
50	987	17	31
papers	citations	h-index	g-index
51	51	51	1602
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mask-less nano-structuring of hydrogen terminated diamond using localized field emission scanning probe lithography (FE-SPL). Applied Physics Letters, 2022, 120, 093503.	1.5	1
2	Low-Noise Diamond-Based D.C. Nano-SQUIDs. ACS Applied Electronic Materials, 2022, 4, 2246-2252.	2.0	1
3	Fluorination of the silicon-terminated (100) diamond surface using C60F48. Diamond and Related Materials, 2022, 126, 109084.	1.8	O
4	Hydrogen-Terminated Diamond MOSFETs Using Ultrathin Glassy Ga ₂ O ₃ Dielectric Formed by Low-Temperature Liquid Metal Printing Method. ACS Applied Electronic Materials, 2022, 4, 2272-2280.	2.0	6
5	High-field magnetotransport studies of surface-conducting diamonds. Physical Review B, 2022, 105, .	1.1	O
6	Surface transfer doping of diamond using solution-processed molybdenum trioxide. Carbon, 2021, 175, 20-26.	5 . 4	5
7	Correlation between electronic micro-roughness and surface topography in two-dimensional surface conducting hydrogen-terminated diamond. Diamond and Related Materials, 2021, 116, 108377.	1.8	5
8	MoO3 induces p-type surface conductivity by surface transfer doping in diamond. Applied Surface Science, 2020, 509, 144890.	3.1	30
9	Engineering the spin $\hat{a} \in \hat{b}$ orbit interaction in surface conducting diamond with a solid-state gate dielectric. Applied Physics Letters, 2020, 116 , .	1.5	6
10	Epitaxial Formation of SiC on (100) Diamond. ACS Applied Electronic Materials, 2020, 2, 2003-2009.	2.0	5
11	Palladium forms Ohmic contact on hydrogen-terminated diamond down to 4 K. Applied Physics Letters, 2020, 116, .	1.5	14
12	Strong spin-orbit interaction induced by transition metal oxides at the surface of hydrogen-terminated diamond. Carbon, 2020, 164, 244-250.	5 . 4	11
13	High-electron-affinity oxide V2O5 enhances surface transfer doping on hydrogen-terminated diamond. Diamond and Related Materials, 2020, 108, 107865.	1.8	14
14	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -factor and well-width fluctuations as a function of carrier density in the two-dimensional hole accumulation layer of transfer-doped diamond. Physical Review B, 2019, 99, .	1.1	11
15	Evidence for Primal sp ² Defects at the Diamond Surface: Candidates for Electron Trapping and Noise Sources. Advanced Materials Interfaces, 2019, 6, 1801449.	1.9	75
16	G-factor and well width variations for the two-dimensional hole gas in surface conducting diamond. Applied Physics Letters, 2018, 112, .	1.5	18
17	Thermal Stability and Oxidation of Group IV Terminated (100) Diamond Surfaces. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800283.	0.8	7
18	Germanium terminated (1 0 0) diamond. Journal of Physics Condensed Matter, 2017, 29, 145002.	0.7	7

#	Article	IF	CITATIONS
19	P-type surface transfer doping of oxidised silicon terminated (100) diamond. Applied Physics Letters, 2017, 110, .	1.5	14
20	Strong and Tunable Spin–Orbit Coupling in a Two-Dimensional Hole Gas in Ionic-Liquid Gated Diamond Devices. Nano Letters, 2016, 16, 3768-3773.	4.5	45
21	Nitrogen Terminated Diamond. Advanced Materials Interfaces, 2015, 2, 1500079.	1.9	61
22	Spin–Orbit Interaction in a Two-Dimensional Hole Gas at the Surface of Hydrogenated Diamond. Nano Letters, 2015, 15, 16-20.	4. 5	39
23	A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nature Communications, 2015, 6, 6563.	5 . 8	90
24	Formation of a silicon terminated (100) diamond surface. Applied Physics Letters, 2015, 106, .	1.5	28
25	Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces. Nanoscale, 2015, 7, 1471-1478.	2.8	34
26	Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission. Journal of Physics Condensed Matter, 2014, 26, 395008.	0.7	4
27	Photoelectron emission from lithiated diamond. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2209-2222.	0.8	30
28	Energy level alignment at the porphyrin/cobaltocene interface: From transfer doping to cobalt intercalation. Organic Electronics, 2014, 15, 531-536.	1.4	2
29	Diamond surface conductivity: Properties, devices, and sensors. MRS Bulletin, 2014, 39, 542-548.	1.7	64
30	Charge Transfer Doping of Silicon. Physical Review Letters, 2014, 112, 155502.	2.9	22
31	Doping efficiency and energy-level scheme in C60F48-doped zinc–tetraphenylporphyrin films. Organic Electronics, 2013, 14, 169-174.	1.4	22
32	Effect of the Nanodiamond Host on a Nitrogenâ€Vacancy Colorâ€Centre Emission State. Small, 2013, 9, 132-139.	5 . 2	72
33	Calculating the Universal Energyâ€Level Alignment of Organic Molecules on Metal Oxides. Advanced Functional Materials, 2013, 23, 794-805.	7.8	79
34	Diamond Surfaces with Airâ€Stable Negative Electron Affinity and Giant Electron Yield Enhancement. Advanced Functional Materials, 2013, 23, 5608-5614.	7.8	58
35	Identifying passivated dynamic force microscopy tips on H:Si(100). Applied Physics Letters, 2012, 100, .	1.5	22
36	Fluorination of the diamond surface by photoinduced dissociation of C60F48. Physical Review B, 2011, 84, .	1.1	15

#	Article	IF	Citations
37	Flux noise in ion-implanted nanoSQUIDs. Superconductor Science and Technology, 2009, 22, 064006.	1.8	10
38	Work function of hydrogen-terminated diamond surfaces under ion impact. Surface Science, 2007, 601, 5732-5735.	0.8	9
39	Integration of Single Ion Implantation Method in Focused Ion Beam System for Nanofabrication. , 2006,		1
40	Nanofabrication of charge-based Si:P quantum computer devices using single-ion implantation. , 2005, ,		1
41	Optimization of single keV ion implantation for the construction of single P-donor devices., 2005,,.		2
42	Manipulation of single magnetic protein particles using atomic force microscopy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1231-E1233.	1.0	11
43	IBIC characterisation of novel detectors for single atom doping of quantum computer devices. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 186-190.	0.6	5
44	Single Phosphorus Ion Implantation into Prefabricated Nanometre Cells of Silicon Devices for Quantum Bit Fabrication. Japanese Journal of Applied Physics, 2003, 42, 4124-4128.	0.8	16
45	Novel Detectors For Single Atom Doping Of Quantum Computer Devices. AIP Conference Proceedings, 2003, , .	0.3	0
46	Nanoscale fabrication using single-ion impacts. Smart Materials and Structures, 2002, 11, 686-690.	1.8	5
47	Single ion implantation in the quantum computer construction project. , 2002, , .		0
48	Modelling of electrostatic gate operations in the Kane solid state quantum computer. Microelectronics Journal, 2002, 33, 1053-1058.	1.1	8
49	Modeling of electrostatic gate operations in the Kane solid state quantum computer. , 2001, , .		0
50	<title>Nanoscale fabrication using single-ion impacts</title> ., 2001, 4590, 173.		2