Youngjin Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9089428/youngjin-kim-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37 papers	3,194	2 O	43
	citations	h-index	g-index
43 ext. papers	3,560 ext. citations	11.7 avg, IF	5.47 L-index

#	Paper	IF	Citations
37	Wet-CO Pretreatment Process for Reducing Residual Lithium in High-Nickel Layered Oxides for Lithium-Ion Batteries. <i>ACS Applied Materials & Discrete States</i> , 2021, 13, 27096-27105	9.5	7
36	Nonpolar Solvent-based Electrolytes with a Quasi-Solid-State Redox Reaction for Lithium-Sulfur Batteries. <i>ChemElectroChem</i> , 2021 , 8, 2321-2328	4.3	
35	Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. <i>Energy Storage Materials</i> , 2021 , 34, 250-259	19.4	54
34	Failure mode of thick cathodes for Li-ion batteries: Variation of state-of-charge along the electrode thickness direction. <i>Electrochimica Acta</i> , 2021 , 370, 137743	6.7	10
33	Unraveling the Intricacies of Residual Lithium in High-Ni Cathodes for Lithium-Ion Batteries. <i>ACS Energy Letters</i> , 2021 , 6, 941-948	20.1	27
32	Rational Design of Coating Ions via Advantageous Surface Reconstruction in High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101112	21.8	11
31	Seawater Battery-Based Wireless Marine Buoy System With Battery Degradation Prediction and Multiple Power Optimization Capabilities. <i>IEEE Access</i> , 2021 , 9, 104104-104114	3.5	3
30	Impact of Residual Lithium on the Adoption of High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 9479-9489	9.6	28
29	Rechargeable Seawater Batteries: Rechargeable Seawater Batteries From Concept to Applications (Adv. Mater. 20/2019). <i>Advanced Materials</i> , 2019 , 31, 1970141	24	2
28	Scalable Solid-State Synthesis of Self-Assembled Si Nanoparticles in Spherical Carbons through Relative Miscibility for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1127-A1131	3.9	1
27	Rechargeable Seawater Batteries-From Concept to Applications. <i>Advanced Materials</i> , 2019 , 31, e18049.	3 6 4	44
26	Role of Na+in the Cation Disorder of [Li1-xNax]NiO2as a Cathode for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A201-A205	3.9	15
25	Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell. <i>APL Materials</i> , 2018 , 6, 047901	5.7	8
24	Environmentally Sustainable Aluminum-Coordinated Poly(tetrahydroxybenzoquinone) as a Promising Cathode for Sodium Ion Batteries. <i>ACS Applied Materials & Description of the Promising Cathode for Sodium Ion Batteries</i> . <i>ACS Applied Materials & Description of the Promising Cathode for Sodium Ion Batteries</i> . <i>ACS Applied Materials & Description of the Promising Cathode for Sodium Ion Batteries</i> .	8 6 ·5	29
23	Cointercalation of Mg2+ Ions into Graphite for Magnesium-Ion Batteries. <i>Chemistry of Materials</i> , 2018 , 30, 3199-3203	9.6	52
22	Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries. <i>ACS Nano</i> , 2018 , 12, 4419-4430	16.7	92
21	Living Light-Induced Crystallization-Driven Self-Assembly for Rapid Preparation of Semiconducting Nanofibers. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6088-6094	16.4	88

(2013-2018)

20	Swelling-induced pore generation in fluorinated polynorbornene block copolymer films. <i>Polymer Chemistry</i> , 2018 , 9, 3536-3542	4.9	10
19	Hydrothermally synthesized tin (IV) sulfide as a negative electrode for sodium-ion batteries and its sodiation mechanism. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 808, 137-140	4.1	1
18	Investigation into the stability of Li metal anodes in LiD2 batteries with a redox mediator. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10609-10621	13	51
17	Increase of both solubility and working voltage by acetyl substitution on ferrocene for non-aqueous flow battery. <i>Electrochemistry Communications</i> , 2016 , 69, 72-75	5.1	30
16	Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries. <i>ACS Applied Materials & Date of the Mater</i>	9.5	47
15	Interfacial architectures based on a binary additive combination for high-performance Sn4P3 anodes in sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8332-8338	13	64
14	Electrode Performances of Amorphous Molybdenum Oxides of Different Molybdenum Valence for Lithium-ion Batteries. <i>Israel Journal of Chemistry</i> , 2015 , 55, 604-610	3.4	12
13	Thermal Behavior of Solid Electrolyte Interphase Films Deposited on Graphite Electrodes with Different States-of-Charge. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A892-A896	3.9	20
12	Selectively accelerated lithium ion transport to silicon anodes via an organogel binder. <i>Journal of Power Sources</i> , 2015 , 298, 8-13	8.9	18
11	SnSe alloy as a promising anode material for Na-ion batteries. <i>Chemical Communications</i> , 2015 , 51, 50-3	5.8	108
10	Breathing silicon anodes for durable high-power operations. Scientific Reports, 2015, 5, 14433	4.9	45
9	Tin phosphide as a promising anode material for Na-ion batteries. <i>Advanced Materials</i> , 2014 , 26, 4139-4	424	316
8	High-capacity anode materials for sodium-ion batteries. Chemistry - A European Journal, 2014 , 20, 11980)-49.8	442
7	A first-cycle coulombic efficiency higher than 100% observed for a Li2MO3 (M = Mo or Ru) electrode. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10654-7	16.4	17
6	A First-Cycle Coulombic Efficiency Higher than 100 % Observed for a Li2MO3 (M=Mo or Ru) Electrode. <i>Angewandte Chemie</i> , 2014 , 126, 10830-10833	3.6	1
5	An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. <i>Advanced Materials</i> , 2013 , 25, 3045-9	24	685
4	Charge carriers in rechargeable batteries: Na ions vs. Li ions. <i>Energy and Environmental Science</i> , 2013 , 6, 2067	35.4	635
3	Composites: An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries (Adv. Mater. 22/2013). <i>Advanced Materials</i> , 2013 , 25, 3010-3010	24	6

Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. *Journal of the American Chemical Society*, **2012**, 134, 15010-5

16.4 209

Development of Prismatic Cells for Rechargeable Seawater Batteries. *Advanced Sustainable Systems*,2100484

5.9 3