Christopher E Doughty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 2015, 528, 119-122.	13.7	482
2	Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 2015, 519, 78-82.	13.7	464
3	Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature, 2014, 506, 76-80.	13.7	398
4	Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 838-846.	3.3	366
5	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
6	The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3225-3245.	1.8	317
7	Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 868-873.	3.3	308
8	Are tropical forests near a high temperature threshold?. Journal of Geophysical Research, 2008, 113, .	3.3	207
9	Animals and the zoogeochemistry of the carbon cycle. Science, 2018, 362, .	6.0	197
10	Rewilding: Science, Practice, and Politics. Annual Review of Environment and Resources, 2015, 40, 39-62.	5.6	196
11	Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology Letters, 2014, 17, 324-332.	3.0	176
12	Seasonal patterns of tropical forest leaf area index and CO ₂ exchange. Journal of Geophysical Research, 2008, 113, .	3.3	159
13	The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 2013, 6, 761-764.	5.4	149
14	The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21, 2283-2295.	4.2	146
15	Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytologist, 2017, 214, 1049-1063.	3.5	132
16	The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 2017, 214, 1019-1032.	3.5	126
17	Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 2017, 20, 779-788.	3.0	107
18	Predicting tropical plant physiology from leaf and canopy spectroscopy. Oecologia, 2011, 165, 289-299.	0.9	106

Christopher E Doughty

#	Article	IF	CITATIONS
19	Residence times of woody biomass in tropical forests. Plant Ecology and Diversity, 2013, 6, 139-157.	1.0	104
20	The megabiota are disproportionately important for biosphere functioning. Nature Communications, 2020, 11, 699.	5.8	99
21	Theoretical Impact of Changing Albedo on Precipitation at the Southernmost Boundary of the ITCZ in South America. Earth Interactions, 2012, 16, 1-14.	0.7	93
22	Allocation tradeâ€offs dominate the response of tropical forest growth to seasonal and interannual drought. Ecology, 2014, 95, 2192-2201.	1.5	86
23	Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 2016, 39, 194-203.	2.1	86
24	The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology and Diversity, 2014, 7, 85-105.	1.0	82
25	Lateral Diffusion of Nutrients by Mammalian Herbivores in Terrestrial Ecosystems. PLoS ONE, 2013, 8, e71352.	1.1	76
26	An <i>In Situ</i> Leaf and Branch Warming Experiment in the Amazon. Biotropica, 2011, 43, 658-665.	0.8	71
27	Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first humanâ€induced global warming?. Geophysical Research Letters, 2010, 37, .	1.5	68
28	Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 107-123.	1.0	63
29	Carbon stocks in central African forests enhanced by elephant disturbance. Nature Geoscience, 2019, 12, 725-729.	5.4	62
30	The impact of the megafauna extinctions on savanna woody cover in South America. Ecography, 2016, 39, 213-222.	2.1	57
31	Megafauna in the Earth system. Ecography, 2016, 39, 99-108.	2.1	57
32	Assessing traitâ€based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecology and Biogeography, 2017, 26, 1357-1373.	2.7	57
33	A comparison of plotâ€based satellite and Earth system model estimates of tropical forest net primary production. Global Biogeochemical Cycles, 2015, 29, 626-644.	1.9	55
34	Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecology and Diversity, 2014, 7, 7-24.	1.0	52
35	Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 125-142.	1.0	47
36	Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate?. Climatic Change, 2011, 104, 379-387.	1.7	46

#	Article	IF	CITATIONS
37	The production, allocation and cycling of carbon in a forest on fertile <i>terra preta</i> soil in eastern Amazonia compared with a forest on adjacent infertile soil. Plant Ecology and Diversity, 2014, 7, 41-53.	1.0	44
38	Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest. Global Biogeochemical Cycles, 2010, 24, .	1.9	43
39	Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Global Biogeochemical Cycles, 2016, 30, 700-715.	1.9	43
40	Preindustrial Human Impacts on Global and Regional Environment. Annual Review of Environment and Resources, 2013, 38, 503-527.	5.6	42
41	The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 2021, 253, 108889.	1.9	42
42	Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecology and Diversity, 2014, 7, 25-40.	1.0	41
43	ENSO Drives interannual variation of forest woody growth across the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170410.	1.8	41
44	Source and sink carbon dynamics and carbon allocation in the Amazon basin. Global Biogeochemical Cycles, 2015, 29, 645-655.	1.9	40
45	The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia, 2014, 174, 295-306.	0.9	38
46	Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles – the potential of vegetation models. Ecography, 2018, 41, 1934-1954.	2.1	38
47	Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian forest. Geophysical Research Letters, 2006, 33, .	1.5	37
48	Detecting Tree-like Multicellular Life on Extrasolar Planets. Astrobiology, 2010, 10, 869-879.	1.5	37
49	The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in Bolivia. Plant Ecology and Diversity, 2014, 7, 55-69.	1.0	34
50	Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses. Geoscientific Model Development, 2015, 8, 1097-1110.	1.3	31
51	Herbivores increase the global availability of nutrients over millions of years. Nature Ecology and Evolution, 2017, 1, 1820-1827.	3.4	28
52	What controls variation in carbon use efficiency among Amazonian tropical forests?. Biotropica, 2018, 50, 16-25.	0.8	28
53	Andean grasslands are as productive as tropical cloud forests. Environmental Research Letters, 2014, 9, 115011.	2.2	27
54	Interdependency of plants and animals in controlling the sodium balance of ecosystems and the impacts of global defaunation. Ecography, 2016, 39, 204-212.	2.1	27

CHRISTOPHER E DOUGHTY

#	Article	IF	CITATIONS
55	The seasonal cycle of productivity, metabolism and carbon dynamics in a wet aseasonal forest in north-west Amazonia (Iquitos, Peru). Plant Ecology and Diversity, 2014, 7, 71-83.	1.0	25
56	Tropical forest leaves may darken in response to climate change. Nature Ecology and Evolution, 2018, 2, 1918-1924.	3.4	23
57	Impacts of fire on sources of soil <scp>CO</scp> ₂ efflux in a dry Amazon rain forest. Global Change Biology, 2018, 24, 3629-3641.	4.2	23
58	Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru. Journal of Tropical Ecology, 2014, 30, 503-519.	0.5	22
59	Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery. Remote Sensing, 2018, 10, 1532.	1.8	22
60	Mycorrhizal symbioses influence the trophic structure of the Serengeti. Journal of Ecology, 2018, 106, 536-546.	1.9	20
61	Assessing above-ground woody debris dynamics along a gradient of elevation in Amazonian cloud forests in Peru: balancing above-ground inputs and respiration outputs. Plant Ecology and Diversity, 2014, 7, 143-160.	1.0	19
62	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	0.8	19
63	The impact of large animal extinctions on nutrient fluxes in early river valley civilizations. Ecosphere, 2013, 4, 1-17.	1.0	17
64	Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2952-2965.	1.3	17
65	Agricultural net primary production in relation to that liberated by the extinction of Pleistocene mega-herbivores: an estimate of agricultural carrying capacity?. Environmental Research Letters, 2010, 5, 044001.	2.2	13
66	Fine root dynamics across pantropical rainforest ecosystems. Global Change Biology, 2021, 27, 3657-3680.	4.2	13
67	Montane forest root growth and soil organic layer depth as potential factors stabilizing Cenozoic global change. Geophysical Research Letters, 2014, 41, 983-990.	1.5	12
68	Megafauna decline have reduced pathogen dispersal which may have increased emergent infectious diseases. Ecography, 2020, 43, 1107-1117.	2.1	12
69	Variations of carbon allocation and turnover time across tropical forests. Global Ecology and Biogeography, 2021, 30, 1271-1285.	2.7	12
70	The development of agriculture in the Americas: an ecological perspective. Ecosphere, 2010, 1, 1-11.	1.0	10
71	Large predators can mitigate nutrient losses associated with offâ€site removal of animals from a wildlife reserve. Journal of Applied Ecology, 2021, 58, 1360-1369.	1.9	8
72	Changing NPP consumption patterns in the Holocene: From megafauna-â€~liberated' NPP to â€~ecological bankruptcy'. Infrastructure Asset Management, 2016, 3, 174-187.	1.2	7

Christopher E Doughty

#	Article	IF	CITATIONS
73	Greater stem growth, woody allocation, and aboveground biomass in Paleotropical forests than in Neotropical forests. Ecology, 2019, 100, e02589.	1.5	7
74	Improved estimation of gut passage time considerably affects traitâ€based dispersal models. Functional Ecology, 2021, 35, 860-869.	1.7	6
75	Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?. PLoS ONE, 2016, 11, e0167188.	1.1	5
76	The Biogeochemistry of the Main Forest Vegetation Types in Amazonia. Ecological Studies, 2016, , 225-266.	0.4	4
77	Hyaenas play unique ecosystem role by recycling key nutrients in bones. African Journal of Ecology, 2022, 60, 81-86.	0.4	3
78	Predicting tropical tree mortality with leaf spectroscopy. Biotropica, 2021, 53, 581-595.	0.8	3
79	The sixth R: Revitalizing the natural phosphorus pump. Science of the Total Environment, 2022, 832, 155023.	3.9	3
80	Forest Thinning in Ponderosa Pines Increases Carbon Use Efficiency and Energy Flow From Primary Producers to Primary Consumers. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005947.	1.3	2
81	Large contribution of recent photosynthate to soil respiration in tropical dipterocarp forest revealed by girdling. Journal of Ecology, 0, , .	1.9	2
82	Distinguishing multicellular life on exoplanets by testing Earth as an exoplanet. International Journal of Astrobiology, 2020, 19, 492-499.	0.9	1
83	Reply to â€~Coal geology affects nutrient diffusion modelling in the prehistoric record'. Nature Ecology and Evolution, 2019, 3, 507-507.	3.4	Ο