
Siavash Iravani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089335/publications.pdf Version: 2024-02-01

SIAWASH IDAVANI

#	Article	IF	CITATIONS
1	Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011, 13, 2638.	4.6	2,480
2	Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydrate Polymers, 2021, 251, 116986.	5.1	385
3	Plant-derived nanostructures: types and applications. Green Chemistry, 2016, 18, 20-52.	4.6	341
4	Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environmental Chemistry Letters, 2020, 18, 703-727.	8.3	311
5	Greener synthesis of lignin nanoparticles and their applications. Green Chemistry, 2020, 22, 612-636.	4.6	280
6	Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. International Scholarly Research Notices, 2014, 2014, 1-18.	0.9	279
7	Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials, 2021, 401, 123401.	6.5	259
8	Production of nanoparticles using organisms. Critical Reviews in Biotechnology, 2009, 29, 279-306.	5.1	252
9	Green Synthesis of Silver Nanoparticles Using <i>Pinus eldarica</i> Bark Extract. BioMed Research International, 2013, 2013, 1-5.	0.9	199
10	Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere, 2021, 263, 128005.	4.2	184
11	Optimization of biological synthesis of silver nanoparticles using <i>Lactobacillus casei</i> subsp. <i>casei</i> . Journal of Chemical Technology and Biotechnology, 2012, 87, 932-937.	1.6	141
12	Plants and plant-based polymers as scaffolds for tissue engineering. Green Chemistry, 2019, 21, 4839-4867.	4.6	131
13	Nanomaterials and Nanotechnology-Associated Innovations against Viral Infections with a Focus on Coronaviruses. Nanomaterials, 2020, 10, 1072.	1.9	119
14	Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chemistry, 2020, 22, 2643-2661.	4.6	118
15	Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chemistry, 2019, 21, 1845-1865.	4.6	109
16	Plant-Derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-Delivery. ACS Sustainable Chemistry and Engineering, 2019, 7, 8055-8069.	3.2	95
17	Nano- and biosensors for the detection of SARS-CoV-2: challenges and opportunities. Materials Advances, 2020, 1, 3092-3103.	2.6	90
18	Technology and potential applications of probiotic encapsulation in fermented milk products. Journal of Food Science and Technology, 2015, 52, 4679-4696.	1.4	89

#	Article	IF	CITATIONS
19	Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Scientific Reports, 2021, 11, 23479.	1.6	88
20	Metallic nanoparticles: green synthesis and spectroscopic characterization. Environmental Chemistry Letters, 2017, 15, 223-231.	8.3	84
21	MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomaterials Science and Engineering, 2021, 7, 1900-1913.	2.6	84
22	MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Materials Advances, 2021, 2, 2906-2917.	2.6	82
23	Bacteria in Heavy Metal Remediation and Nanoparticle Biosynthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 5395-5409.	3.2	79
24	Biosynthesis of silver nanoparticles using <i>Saccharomyces cerevisiae</i> . Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 235-239.	1.9	77
25	Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomaterials Science and Engineering, 2021, 7, 3053-3068.	2.6	74
26	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	4.6	72
27	Biofactories: engineered nanoparticles <i>via</i> genetically engineered organisms. Green Chemistry, 2019, 21, 4583-4603.	4.6	64
28	Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomaterials, 2020, 10, 1784.	1.9	59
29	Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum. Iranian Journal of Pharmaceutical Research, 2013, 12, 289-98.	0.3	59
30	Biosynthesis of spinel nickel ferrite nanowhiskers and their biomedical applications. Scientific Reports, 2021, 11, 17431.	1.6	53
31	Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. Journal of Drug Targeting, 2021, 29, 716-741.	2.1	52
32	Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. International Journal of Biological Macromolecules, 2021, 178, 193-228.	3.6	51
33	Core–Shell Nanophotocatalysts: Review of Materials and Applications. ACS Applied Nano Materials, 2022, 5, 55-86.	2.4	49
34	MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments on Inorganic Chemistry, 2021, 41, 213-248.	3.0	48
35	Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: current challenges and future perspectives. Green Chemistry, 2020, 22, 2662-2687.	4.6	47
36	MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nano-Micro Letters, 2022, 14, .	14.4	46

#	Article	IF	CITATIONS
37	MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceramics International, 2022, 48, 24144-24156.	2.3	44
38	Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess and Biosystems Engineering, 2019, 42, 2007-2014.	1.7	41
39	Molecularly imprinted polymers for the detection of viruses: challenges and opportunities. Analyst, The, 2021, 146, 3087-3100.	1.7	41
40	Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorganic Chemistry Communication, 2021, 131, 108800.	1.8	36
41	Plant Pollen Grains: A Move Towards Green Drug and Vaccine Delivery Systems. Nano-Micro Letters, 2021, 13, 128.	14.4	33
42	Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications. Nanomaterials, 2022, 12, 1200.	1.9	33
43	Green and Eco-Friendly Synthesis of Nanophotocatalysts: An Overview. Comments on Inorganic Chemistry, 2021, 41, 133-187.	3.0	32
44	Synthesis of silver nanoparticles using methanol and dichloromethane extracts of <i>Pulicaria gnaphalodes</i> (Vent.) Boiss. aerial parts. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 328-333.	1.9	31
45	SARS-CoV-2 (COVID-19): New Discoveries and Current Challenges. Applied Sciences (Switzerland), 2020, 10, 3641.	1.3	31
46	MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. Comments on Inorganic Chemistry, 2022, 42, 174-207.	3.0	31
47	Silver Nanoparticles. , 0, , .		30
48	Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm, 2022, 3, e118.	3.1	30
49	Green biosynthesis of silver nanoparticles using <i>Quercus brantii</i> (oak) leaves hydroalcoholic extract. Pharmaceutical Biology, 2015, 53, 807-812.	1.3	27
50	Potential inhibitors of SARS-CoV-2: recent advances. Journal of Drug Targeting, 2021, 29, 349-364.	2.1	27
51	Cytotoxicity properties of plant-mediated synthesized K-doped ZnO nanostructures. Bioprocess and Biosystems Engineering, 2022, 45, 97-105.	1.7	27
52	Nanomaterials and nanotechnology for water treatment: recent advances. Inorganic and Nano-Metal Chemistry, 2021, 51, 1615-1645.	0.9	26
53	Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials, 2022, 12, 2440.	1.9	26
54	Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. Comments on Inorganic Chemistry, 2021, 41, 317-372.	3.0	23

#	Article	IF	CITATIONS
55	Plants in Nanoparticle Synthesis. Reviews in Advanced Sciences and Engineering, 2014, 3, 261-274.	0.6	23
56	Ceramic magnetic ferrite nanoribbons: Eco-friendly synthesis and their antifungal and parasiticidal activity. Ceramics International, 2022, 48, 3448-3454.	2.3	23
57	Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. Materials Advances, 2022, 3, 4765-4782.	2.6	23
58	MXenes in photomedicine: advances and prospects. Chemical Communications, 2022, 58, 7336-7350.	2.2	23
59	Important Roles of Oligo- and Polysaccharides against SARS-CoV-2: Recent Advances. Applied Sciences (Switzerland), 2021, 11, 3512.	1.3	22
60	Theranostic applications of metal–organic frameworks (MOFs)-based materials in brain disorders: Recent advances and challenges. Inorganic Chemistry Communication, 2021, 134, 108997.	1.8	22
61	MXenes for antimicrobial and antiviral applications: recent advances. Materials Technology, 2022, 37, 1890-1905.	1.5	20
62	Plant gums for sustainable and eco-friendly synthesis of nanoparticles: recent advances. Inorganic and Nano-Metal Chemistry, 2020, 50, 469-488.	0.9	19
63	Quantum dots against <scp>SARSâ€CoV</scp> â€2: diagnostic and therapeutic potentials. Journal of Chemical Technology and Biotechnology, 2022, 97, 1640-1654.	1.6	18
64	Ferromagnetic nickel (II) oxide (NiO) nanoparticles: biosynthesis, characterization and their antibacterial activities. Rendiconti Lincei, 2022, 33, 127-134.	1.0	18
65	Nanosponges for Water Treatment: Progress and Challenges. Applied Sciences (Switzerland), 2022, 12, 4182.	1.3	18
66	Iron oxyhydroxide nanoparticles: green synthesis and their cytotoxicity activity against A549 human lung adenocarcinoma cells. Rendiconti Lincei, 2022, 33, 461-469.	1.0	15
67	Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Materials Advances, 2022, 3, 4783-4796.	2.6	14
68	Green biosynthesis of silver nanoparticles usingAlthaea officinalisradix hydroalcoholic extract. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 209-215.	1.9	13
69	Barium carbonate nanostructures: Biosynthesis and their biomedical applications. Ceramics International, 2021, 47, 21045-21050.	2.3	13
70	Algae-derived materials for tissue engineering and regenerative medicine applications: current trends and future perspectives. Emergent Materials, 2022, 5, 631-652.	3.2	13
71	Phytosynthesis of Nanoparticles. , 2015, , 203-258.		12
72	Leishmanicidal activities of biosynthesized BaCO3 (witherite) nanoparticles and their biocompatibility with macrophages. Bioprocess and Biosystems Engineering, 2021, 44, 1957-1964.	1.7	12

#	Article	IF	CITATIONS
73	Nanophotocatalysts against viruses and antibiotic-resistant bacteria: recent advances. Critical Reviews in Microbiology, 2022, 48, 67-82.	2.7	12
74	Silver Nanoparticles. , 2010, , .		11
75	K-doped ZnO nanostructures: biosynthesis and parasiticidal application. Journal of Materials Research and Technology, 2021, 15, 5445-5451.	2.6	11
76	Synthesis of silver nanoparticles using biotransformations by Saccharomyces boulardii. Green Processing and Synthesis, 2014, 3, .	1.3	10
77	Bio-Based Synthesis of Magnetic Nanoparticles and Their Applications. Nanotechnology in the Life Sciences, 2019, , 13-31.	0.4	8
78	Essential Oil Constituents of the Bark of <i>Pinus pinaster</i> from Iran. Journal of Essential Oil-bearing Plants: JEOP, 2012, 15, 348-351.	0.7	7
79	Biomedical Applications of Lignin-Based Nanoparticles. , 2020, , 217-224.		7
80	Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. Clean Technologies, 2022, 4, 502-511.	1.9	7
81	Green biosynthesis of silver nanoparticles using Azolla pinnata whole plant hydroalcoholic extract. Green Processing and Synthesis, 2014, 3, .	1.3	6
82	Plant Protein-Based Nanoparticles and Their Biomedical Applications. , 2019, , 177-191.		5
83	Core-shell hybrid nanoparticles: Production and application in agriculture and the environment. , 2020, , 21-32.		5
84	Electron paramagnetic resonance (EPR) spectroscopy: Food, biomedical and pharmaceutical analysis. Biomedical Spectroscopy and Imaging, 2020, 9, 165-182.	1.2	5
85	Green Synthesis and Spectroscopic Characterization of Nanoparticles. Sustainable Agriculture Reviews, 2016, , 65-99.	0.6	4
86	Measurement of Oxidative Stress Using ESR Spectroscopy. , 2019, , 73-81.		4
87	Plant Viruses and Bacteriophages for Eco-friendly Synthesis of Nanoparticles: Recent Trends and Important Challenges. Comments on Inorganic Chemistry, 2022, 42, 226-248.	3.0	4
88	EMR of Metallic Nanoparticles. Advanced Structured Materials, 2017, , 79-90.	0.3	2
89	Nanomaterials against pathogenic viruses: greener and sustainable approaches. Inorganic and Nano-Metal Chemistry, 2021, 51, 1598-1614.	0.9	1

90 ESR of Irradiated Drugs and Excipients for Drug Control and Safety. , 2017, , 111-122.

0

#	Article	IF	CITATIONS
91	Magnetic Resonance Spectroscopic Analysis in Brain Tumors. , 2019, , 43-58.		0