Steve W Culman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089077/publications.pdf

Version: 2024-02-01

77 papers 4,484 citations

32 h-index 64 g-index

80 all docs

80 docs citations

80 times ranked

4060 citing authors

#	Article	IF	Citations
1	Minimum dataset and metadata guidelines for soilâ€ŧest correlation and calibration research. Soil Science Society of America Journal, 2022, 86, 19-33.	1.2	13
2	Microbial feedbacks on soil organic matter dynamics underlying the legacy effect of diversified cropping systems. Soil Biology and Biochemistry, 2022, 167, 108584.	4.2	14
3	Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	60
4	Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop. Sustainability, 2022, 14, 3548.	1.6	14
5	Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biology and Biochemistry, 2022, 168, 108618.	4.2	17
6	An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biology and Biochemistry, 2022, 172, 108708.	4.2	63
7	Rigorous, empirical, and quantitative: a proposed pipeline for soil health assessments. Soil Biology and Biochemistry, 2022, 170, 108710.	4.2	20
8	Reply to Chen etÂal.: Soil organic carbon stocks and persistence of surface 30 cm of Mollisols. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	0
9	Knowledge gaps in organic research: understanding interactions of cover crops and tillage for weed control and soil health. Organic Agriculture, 2021, 11, 13-25.	1.2	13
10	Vacant lot soil degradation and mowing frequency shape communities of belowground invertebrates and urban spontaneous vegetation. Urban Ecosystems, 2021, 24, 737-752.	1.1	10
11	Soil balancing within organic farming: negotiating meanings and boundaries in an alternative agricultural community of practice. Agriculture and Human Values, 2021, 38, 449-465.	1.7	7
12	The Effect of Incubation Temperature on the Species Composition of Phytophthora, Phytopythium, and Pythium Communities Associated with Soybean. Phytobiomes Journal, 2021, 5, 133-144.	1.4	4
13	Does crop rotation affect soil organic matter stratification in tillage systems?. Soil and Tillage Research, 2021, 209, 104932.	2.6	22
14	Shortâ€term responses of soils and crops to gypsum application on organic farms. Agronomy Journal, 2021, 113, 4220-4230.	0.9	2
15	Organic Corn Production Practices and Profitability in the Eastern U.S. Corn Belt. Sustainability, 2021, 13, 8682.	1.6	4
16	Base cation saturation ratios vs. sufficiency level of nutrients: A false dichotomy in practice. Agronomy Journal, 2021, 113, 5623-5634.	0.9	6
17	Base cation saturation ratios, soil health, and yield in organic field crops. Agronomy Journal, 2021, 113, 4190-4200.	0.9	9
18	Which management practices influence soil health in Midwest organic corn systems?. Agronomy Journal, 2021, 113, 4201-4219.	0.9	12

#	Article	IF	CITATIONS
19	Implications of choosing different interpolation methods: A case study for soil test phosphorus. Crop, Forage and Turfgrass Management, 2021, 7, e20126.	0.2	4
20	The prevalence and practice of soil balancing among organic corn farmers. Renewable Agriculture and Food Systems, 2021, 36, 365-374.	0.8	4
21	Calibration of Mehlich-3 with Bray P1 and Ammonium Acetate in the Tri-State Region of Ohio, Indiana and Michigan. Communications in Soil Science and Plant Analysis, 2020, 51, 86-97.	0.6	10
22	From the Ground Up: Prairies on Reclaimed Mine Landâ€"Impacts on Soil and Vegetation. Land, 2020, 9, 455.	1.2	7
23	Grinding and spectra replication often improves midâ€DRIFTS predictions of soil properties. Soil Science Society of America Journal, 2020, 84, 914-929.	1.2	17
24	Do soil test levels and fertilization with phosphorus and potassium impact field crop tissue concentrations?. Agronomy Journal, 2020, 112, 3024-3036.	0.9	9
25	Optimizing acquisition parameters in diffuse reflectance infrared Fourier transform spectroscopy of soils. Soil Science Society of America Journal, 2020, 84, 930-948.	1.2	12
26	Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth, 2020, 2, 284-293.	3.6	219
27	Grain Yield Response of Corn (Zea mays L.) to Nitrogen Management Practices and Flooding. Plants, 2020, 9, 348.	1.6	3
28	Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Scientific Reports, 2020, 10, 3917.	1.6	38
29	Soil test phosphorus and phosphorus balance trends: A countyâ€level analysis in Ohio. Agronomy Journal, 2020, 112, 1617-1624.	0.9	8
30	Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma, 2020, 365, 114227.	2.3	70
31	Assessing the sensitivity and repeatability of permanganate oxidizable carbon as a soil health metric: An interlab comparison across soils. Geoderma, 2020, 366, 114235.	2.3	36
32	Effects of defoliation and row spacing on intermediate wheatgrass I: Grain production. Agronomy Journal, 2020, 112, 1748-1763.	0.9	31
33	Effects of defoliation and row spacing on intermediate wheatgrass II: Forage yield and economics. Agronomy Journal, 2020, 112, 1862-1880.	0.9	29
34	Perennial grain crop roots and nitrogen management shape soil food webs and soil carbon dynamics. Soil Biology and Biochemistry, 2019, 137, 107573.	4.2	56
35	Long-term application of low C:N residues enhances maize yield and soil nutrient pools across Kenya. Nutrient Cycling in Agroecosystems, 2019, 114, 261-276.	1.1	18
36	How Does Phosphorus Restriction Impact Soil Health Parameters in Midwestern Corn–Soybean Systems?. Agronomy Journal, 2019, 111, 1682-1692.	0.9	7

3

#	Article	IF	Citations
37	Effects of Gypsum Application Rate and Frequency on Corn Response to Nitrogen. Agronomy Journal, 2019, 111, 1109-1117.	0.9	14
38	Harvesting forage of the perennial grain crop kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen cycling. Plant and Soil, 2019, 437, 241-254.	1.8	48
39	Farmer-Focused Tools to Improve Soil Health Monitoring on Smallholder Farms in the Morogoro Region of Tanzania. Plant Health Progress, 2018, 19, 56-63.	0.8	2
40	Perennial grain on a Midwest Alfisol shows no sign of early soil carbon gain. Renewable Agriculture and Food Systems, 2018, 33, 360-372.	0.8	30
41	Historical perspective of soil balancing theory and identifying knowledge gaps: A review. Crops & Soils, 2018, 51, 40-47.	0.1	4
42	How Does Nitrogen and Perenniality Influence Belowground Biomass and Nitrogen Use Efficiency in Small Grain Cereals?. Crop Science, 2018, 58, 2110-2120.	0.8	33
43	Overâ€Fertilization Does Not Build Soil Test Phosphorus and Potassium in Ohio. Agronomy Journal, 2018, 110, 56-65.	0.9	32
44	Managing for Multifunctionality in Perennial Grain Crops. BioScience, 2018, 68, 294-304.	2,2	113
45	Absolute values and precision of emerging soil health indicators as affected by soil sieve size. Communications in Soil Science and Plant Analysis, 2018, 49, 1934-1942.	0.6	9
46	Repeatability and Spatiotemporal Variability of Emerging Soil Health Indicators Relative to Routine Soil Nutrient Tests. Soil Science Society of America Journal, 2018, 82, 939-948.	1.2	36
47	Sources of Variability that Compromise Mineralizable Carbon as a Soil Health Indicator. Soil Science Society of America Journal, 2018, 82, 243-252.	1.2	49
48	Soil Protein as a Rapid Soil Health Indicator of Potentially Available Organic Nitrogen. Agricultural and Environmental Letters, 2018, 3, 180006.	0.8	65
49	Biological and Biochemical Tests for Assessing Soil Fertility. Assa, Cssa and Sssa, 2017, , 134-147.	0.6	2
50	Management Options for Contaminated Urban Soils to Reduce Public Exposure and Maintain Soil Health. Journal of Environmental Quality, 2017, 46, 420-430.	1.0	13
51	Historical Perspective of Soil Balancing Theory and Identifying Knowledge Gaps: A Review. Crop, Forage and Turfgrass Management, 2017, 3, 1-7.	0.2	9
52	Quantification of Soil Permanganate Oxidizable C (POXC) Using Infrared Spectroscopy. Soil Science Society of America Journal, 2017, 81, 277-288.	1.2	28
53	Low Soil Phosphorus and Potassium Limit Soybean Grain Yield in Ohio. Crop, Forage and Turfgrass Management, 2017, 3, cftm2016.12.0081.	0.2	6
54	A Pipeline Strategy for Grain Crop Domestication. Crop Science, 2016, 56, 917-930.	0.8	101

#	Article	IF	CITATIONS
55	Comparison of Permanganateâ€Oxidizable Carbon and Mineralizable Carbon for Assessment of Organic Matter Stabilization and Mineralization. Soil Science Society of America Journal, 2016, 80, 1352-1364.	1.2	181
56	Going where no grains have gone before: From early to mid-succession. Agriculture, Ecosystems and Environment, 2016, 223, 223-238.	2.5	108
57	Water Quality and Nutrient Management Extension Programs in Ohio. Journal of Contemporary Water Research and Education, 2015, 156, 48-55.	0.7	3
58	Effect of Planting Date and Starter Fertilizer on Soybean Grain Yield. Crop, Forage and Turfgrass Management, 2015, 1, 1-6.	0.2	20
59	Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Applied Soil Ecology, 2014, 77, 42-50.	2.1	57
60	Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant and Soil, 2014, 381, 405-420.	1.8	79
61	Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems. Agriculture, Ecosystems and Environment, 2013, 179, 35-40.	2.5	84
62	Soil and Water Quality Rapidly Responds to the Perennial Grain Kernza Wheatgrass. Agronomy Journal, 2013, 105, 735-744.	0.9	192
63	Short―and Longâ€Term Labile Soil Carbon and Nitrogen Dynamics Reflect Management and Predict Corn Agronomic Performance. Agronomy Journal, 2013, 105, 493-502.	0.9	151
64	Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction that is Sensitive to Management. Soil Science Society of America Journal, 2012, 76, 494-504.	1.2	436
65	Nematode community responses to a moisture gradient and grazing along a restored riparian corridor. European Journal of Soil Biology, 2012, 50, 32-38.	1.4	20
66	Choice of organic amendments in tomato transplants has lasting effects on bacterial rhizosphere communities and crop performance in the field. Applied Soil Ecology, 2011, 48, 94-101.	2.1	49
67	Abundance, diversity and connectance of soil food web channels along environmental gradients in an agricultural landscape. Soil Biology and Biochemistry, 2011, 43, 2374-2383.	4.2	55
68	Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agriculture, Ecosystems and Environment, 2010, 137, 3-12.	2.5	154
69	Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agriculture, Ecosystems and Environment, 2010, 137, 13-24.	2.5	161
70	No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agriculture, Ecosystems and Environment, 2010, 137, 25-32.	2.5	112
71	Plant-soil biodiversity relationships and nutrient retention in agricultural riparian zones of the Sacramento Valley, California. Agroforestry Systems, 2010, 80, 41-60.	0.9	40
72	Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landscape Ecology, 2010, 25, 1333-1348.	1.9	104

#	Article	IF	CITATIONS
73	Increased Food and Ecosystem Security via Perennial Grains. Science, 2010, 328, 1638-1639.	6.0	397
74	T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics, 2009, 10, 171.	1.2	362
75	Analysis of T-RFLP data using analysis of variance and ordination methods: A comparative study. Journal of Microbiological Methods, 2008, 75, 55-63.	0.7	136
76	Microbial community response to soil solarization in Nepal's rice–wheat cropping system. Soil Biology and Biochemistry, 2006, 38, 3359-3371.	4.2	66
77	Quality or Quantity? Determining the Impact of Fine Root Traits on Soil Health in Row Crop Agriculture. Journal of Soil Science and Plant Nutrition, 0, , 1.	1.7	3