Xingfeng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9089043/publications.pdf

Version: 2024-02-01

516215 794141 6,492 19 16 19 citations g-index h-index papers 20 20 20 5930 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 2017, 16, 572-579.	13.3	1,583
2	Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23685-23693.	4.0	1,314
3	Electrochemical Stability of Li ₁₀ GeP ₂ S ₁₂ and Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolytes. Advanced Energy Materials, 2016, 6, 1501590.	10.2	781
4	First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 3253-3266.	5.2	748
5	Origin of fast ion diffusion in super-ionic conductors. Nature Communications, 2017, 8, 15893.	5.8	570
6	Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries. Joule, 2018, 2, 2016-2046.	11.7	266
7	Superâ€Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 846-853.	7.8	258
8	Statistical variances of diffusional properties from ab initio molecular dynamics simulations. Npj Computational Materials, 2018, 4, .	3.5	240
9	Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode. Advanced Science, 2017, 4, 1600517.	5.6	185
10	Unsupervised discovery of solid-state lithium ion conductors. Nature Communications, 2019, 10, 5260.	5.8	150
11	Accelerated materials design of Na _{0.5} Bi _{0.5} TiO ₃ oxygen ionic conductors based on first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 18035-18044.	1.3	104
12	Crystal Structural Framework of Lithium Super″onic Conductors. Advanced Energy Materials, 2019, 9, 1902078.	10.2	93
13	Hybrid super-aligned carbon nanotube/carbon black conductive networks: AÂstrategy to improve both electrical conductivity and capacity for lithium ionÂbatteries. Journal of Power Sources, 2013, 233, 209-215.	4.0	66
14	Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. Journal of Materials Chemistry A, 2013, 1, 11121.	5.2	50
15	Computationâ€Guided Design of LiTaSiO ₅ , a New Lithium Ionic Conductor with Sphene Structure. Advanced Energy Materials, 2019, 9, 1803821.	10.2	35
16	First-Principles Study of Oxyhydride H– Ion Conductors: Toward Facile Anion Conduction in Oxide-Based Materials. ACS Applied Energy Materials, 2018, 1, 1626-1634.	2.5	26
17	First principles hybrid functional study of small polarons in doped SrCeO3 perovskite: towards computation design of materials with tailored polaron. lonics, 2018, 24, 1139-1151.	1.2	12
18	Li ₁₅ P ₄ S ₁₆ Cl ₃ , a Lithium Chlorothiophosphate as a Solid-State Ionic Conductor. Inorganic Chemistry, 2020, 59, 226-234.	1.9	9

#	Article	IF	CITATIONS
19	Lithium Super″onic Conductors: Crystal Structural Framework of Lithium Super″onic Conductors (Adv. Energy Mater. 43/2019). Advanced Energy Materials, 2019, 9, 1970169.	10.2	2