Xiangbo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088965/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singular characteristics of one-dimensional Fibonacci optical waveguide networks composed of <mml:math <br="" display="inline" id="d1e2392" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si469.svg"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric elements. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 135, 114992.	1.3	4
2	Experimental generation of the polycyclic tornado circular swallowtail beam with self-healing and auto-focusing. Optics Express, 2022, 30, 1829.	1.7	15
3	Electronically Controlled Time-Domain Integral Average Depolarizer Based on a Barium Titanate (BTO) Metasurface. Nanomaterials, 2022, 12, 1228.	1.9	Ο
4	Dual-channel metasurfaces for independent and simultaneous display in near-field and far-field. Optics Express, 2022, 30, 18434.	1.7	3
5	Band-tunable achromatic metalens based on phase change material. Optics Express, 2022, 30, 17541.	1.7	6
6	Tightly focusing evolution of the auto-focusing linear polarized circular Pearcey Gaussian vortex beams. Chaos, Solitons and Fractals, 2021, 143, 110608.	2.5	14
7	Near-infrared thermally modulated varifocal metalens based on the phase change material Sb ₂ S ₃ . Optics Express, 2021, 29, 7925.	1.7	25
8	Electrically-Driven Zoom Metalens Based on Dynamically Controlling the Phase of Barium Titanate (BTO) Column Antennas. Nanomaterials, 2021, 11, 729.	1.9	5
9	Ultrawide Photonic Bandgap and Ultrastrong Photonic Localization Produced by Series of Periodic Networks. Annalen Der Physik, 2021, 533, 2000584.	0.9	5
10	Symmetric Pearcey Gaussian beams. Optics Letters, 2021, 46, 2461.	1.7	33
11	A Selfâ€Defocusing Effect in Series of Networks for Nano Allâ€Optical Switching. Annalen Der Physik, 2021, 533, 2100028.	0.9	4
12	Ultrawide photonic band gaps with the limit of gap-midgap ratio of 200% produced from complete-connected networks. Optics Express, 2021, 29, 21576.	1.7	4
13	Active Modulating the Intensity of Bifocal Metalens with Electrically Tunable Barium Titanate (BTO) Nanofins. Nanomaterials, 2021, 11, 2023.	1.9	11
14	Singular systematic phases, transparencies, and invisibilities produced by parity-time-symmetric Thue–Morse optical waveguide networks. Results in Physics, 2021, 30, 104763.	2.0	3
15	Dynamic generation of giant linear and circular dichroism via phase-change metasurface. Optics Express, 2021, 29, 40759.	1.7	15
16	Singular optical characteristics generated by Fibonacci multilayers composed of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2620" altimg="si65.svg"><mml:mi mathvariant="script">PT</mml:mi>-symmetric elements. Results in Physics_2021_31_104993</mml:math 	2.0	2
17	Abruptly autofocusing properties of radially polarized circle Pearcey vortex beams. Optics Communications, 2020, 457, 124690.	1.0	19
18	The xanthophyll cycle as an early pathogenic target to deregulate guard cells during <i>Sclerotinia sclerotiorum</i> infection. Plant Signaling and Behavior, 2020, 15, 1691704.	1.2	5

#	Article	IF	CITATIONS
19	Abruptly autofocusing chirped ring Pearcey Gaussian vortex beams with caustics state in the nonlinear medium. Optics Express, 2020, 28, 425.	1.7	14
20	The influence of PT-symmetric degree on extraordinary optical properties of one-dimensional periodic optical waveguide networks. Optics Communications, 2020, 459, 124945.	1.0	5
21	Optimization of the Allâ€Optical Switching Constructed from Photonic Bandgap Network. Physica Status Solidi (B): Basic Research, 2020, 257, 1900702.	0.7	2
22	Metasurface Spiral Focusing Generators with Tunable Orbital Angular Momentum Based on Slab Silicon Nitride Waveguide and Vanadium Dioxide (VO2). Nanomaterials, 2020, 10, 1864.	1.9	7
23	Nonparaxial propagation and the radiation forces of the chirped annular Bessel Gaussian beams. Results in Physics, 2020, 19, 103493.	2.0	8
24	Characteristics and mechanism of all-optical switching based on one-dimensional periodic two-segment-connected tetrahedral optical waveguide network. Optics Communications, 2020, 474, 126091.	1.0	5
25	Extraordinary characteristics of one-dimensional PT-symmetric ring optical waveguide networks with near-isometric and isometric arms. Europhysics Letters, 2020, 131, 54001.	0.7	2
26	Propagation dynamics of autofocusing circle Pearcey Gaussian vortex beams in a harmonic potential. Optics Express, 2020, 28, 325.	1.7	22
27	Propagation of the first order annular Bessel Gaussian beams in a uniaxial crystal along the optical axis governed by the Pockels effect. Optics Express, 2020, 28, 24399.	1.7	6
28	Goos-HÃ ¤ chen and Imbert-Fedorov shifts of off-axis Airy vortex beams. Optics Express, 2020, 28, 28916.	1.7	16
29	Characteristics and mechanism of all-optical switching based on a one-dimensional two-connected periodic triangle optical waveguide network. Applied Optics, 2020, 59, 8182.	0.9	5
30	Singular Characteristics of Optical Thue–Morse Multilayers Composed of PT‧ymmetric Elements. Annalen Der Physik, 2019, 531, 1900275.	0.9	9
31	Theoretical Design of a Pumpâ€Free Ultrahigh Efficiency Allâ€Optical Switching Based on a Defect Ring Optical Waveguide Network. Annalen Der Physik, 2019, 531, 1800258.	0.9	15
32	Reflectionless phenomenon in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT -symmetric periodic structures of one-dimensional two-material optical waveguide networks. Physical Review A, 2019, 100, .</mml:mi </mml:math 	1.0	10
33	The Scattering Problem in <i>PT</i> â€6ymmetric Periodic Structures of 1D Twoâ€Material Waveguide Networks. Annalen Der Physik, 2019, 531, 1900120.	0.9	13
34	Transmission characteristics of one-dimensional periodic optical waveguide networks. Physical Review A, 2019, 99, .	1.0	5
35	Effect of turbulent atmosphere on the propagation of a radial phased-locked rotating elliptical Gaussian beam array. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 1690.	0.8	4
36	Singular properties generated by finite periodic PT-symmetric optical waveguide network. Optics Express, 2019, 27, 1538.	1.7	10

#	Article	IF	CITATIONS
37	Dynamics of breathers-like circular Pearcey Gaussian waves in a Kerr medium. Optics Express, 2019, 27, 17482.	1.7	22
38	Abruptly autofocused and rotated circular chirp Pearcey Gaussian vortex beams. Optics Letters, 2019, 44, 955.	1.7	59
39	Effects of the modulated vortex and second-order chirp on the propagation dynamics of ring Pearcey Gaussian beams. Optics Letters, 2019, 44, 4654.	1.7	40
40	Focusing properties of circle Pearcey beams. Optics Letters, 2018, 43, 3626.	1.7	115
41	Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks. Photonics Research, 2018, 6, 579.	3.4	27
42	Effects of the turbulent atmosphere and the oceanic turbulence on the propagation of a rotating elliptical Gaussian beam. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	17
43	Spatiotemporal rapidly autofocused ring Pearcey Gaussian vortex wavepackets. Journal of Optics (United Kingdom), 2018, 20, 075607.	1.0	10
44	Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Applied Optics, 2018, 57, 8418.	0.9	27
45	A novel approach for generating giant electronic persistent currents in symmetric defect mesoscopic-ring networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1241-1247.	0.9	4
46	Ultrastrong Graphene Absorption Induced by One-Dimensional Parity-Time Symmetric Photonic Crystal. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	20
47	Super-Strong Photonic Localizations in Symmetric Defect Waveguide-Ring Networks. IEEE Photonics Journal, 2017, 9, 1-14.	1.0	3
48	Pseudo dynamic investigation on the extreme narrow photonic bands generated by 2D defective two-segment-connected triangular optical waveguide networks. Journal of Optics (India), 2017, 46, 204-224.	0.8	0
49	Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks. Optics Express, 2017, 25, 27724.	1.7	32
50	Propagation of an Airy–Gaussian vortex beam in linear and nonlinear media. Journal of Optics (United) Tj ETQc	10	T /Qyerlock 10
51	Strong Photonic Localizations Generated in Single-Optical-Waveguide Ring. IEEE Photonics Journal, 2016, 8, 1-13.	1.0	4
52	Direct-substitution method for studying second harmonic generation in arbitrary optical superlattices. Results in Physics, 2016, 6, 145-148.	2.0	0
53	Sufficient condition for producing photonic band gaps in one-dimensional optical waveguide networks. Optics Express, 2015, 23, 27576.	1.7	21

54Optical transmission through generalized third-order Fibonacci multilayers. Modern Physics Letters1.0054B, 2014, 28, 1450129.1.00

#	Article	IF	CITATIONS
55	Comb-like optical transmission spectra generated from one-dimensional two-segment-connected two-material waveguide networks optimized by genetic algorithm. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1200-1207.	0.9	15
56	Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1326-1332.	0.9	15
57	Extreme narrow photonic bands and strong photonic localization produced by 2D defect two-segment-connected quadrangular waveguide networks. Journal of Modern Optics, 2014, 61, 1251-1260.	0.6	0
58	Super-strong photonic localization in symmetric two-segment-connected triangular defect waveguide networks. Optics Communications, 2014, 331, 53-58.	1.0	19
59	Comb-like optical transmission spectrum resulting from a four-cornered two-waveguide-connected network. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3048-3051.	0.9	19
60	Giant persistent current in an open mesoscopic ring. European Physical Journal B, 2013, 86, 1.	0.6	3
61	Sidelobe suppression of the reflection spectra of 1D Fibonacci-class superlattices by a nonlinear chirping method and a genetic algorithm. Journal of Optics (United Kingdom), 2012, 14, 075201.	1.0	2
62	Large photonic band gap and strong attenuation of multiconnected Peano network. Optics Communications, 2012, 285, 459-464.	1.0	19
63	Huge photonic band gaps with strong attenuations resulted from quasi-one-dimensional waveguide networks composed of triangular fundamental loops. Optics Communications, 2012, 285, 3775-3780.	1.0	27
64	Large photonic band gaps and strong attenuations of two-segment-connected Peano derivative networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3904-3909.	0.9	24
65	Optical transmission through multicomponent Thue–Morse multilayers. Optics Communications, 2010, 283, 2160-2165.	1.0	6
66	Vector method for studying the second-harmonic-generation light derived from complex periodic ferroelectric domains. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2483-2488.	0.9	0
67	Optical transmission through multi-component generalized Thue–Morse superlattices. Physica B: Condensed Matter, 2010, 405, 3605-3610.	1.3	5
68	Protein folding simulations of 2D HP model by the genetic algorithm based on optimal secondary structures. Computational Biology and Chemistry, 2010, 34, 137-142.	1.1	41
69	Second harmonic generation in generalized Thue–Morse ferroelectric superlattices. Physica B: Condensed Matter, 2009, 404, 3425-3430.	1.3	10
70	Optical transmission through generalized Thue-Morse superlattices. Zeitschrift Fur Kristallographie - Crystalline Materials, 2009, 224, 85-90.	0.4	4
71	Phonon spectra of a Fibonacci chain. Physica B: Condensed Matter, 2008, 403, 2888-2896.	1.3	1
72	Reflection properties of the †̃silvery glaze' on the green glaze of Chinese traditional potteries. Journal of Optics, 2008, 10, 115004.	1.5	1

#	Article	IF	CITATIONS
73	EFFECT OF DEVIATION ON OPTICAL TRANSMISSION THROUGH THUE–MORSE MULTILAYERS. Modern Physics Letters B, 2008, 22, 1913-1921.	1.0	0
74	Optical transmission through generalized SML superlattices. Journal of Physics Condensed Matter, 2007, 19, 356221.	0.7	6
75	Strong attenuation within the photonic band gaps of multiconnected networks. Physical Review B, 2007, 76, .	1.1	46
76	Application of the multiscale singular perturbation method to nonparaxial beam propagations in free space. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 3317.	0.8	6
77	Propagation of radially polarized elegant light beams. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 636.	0.9	50
78	Optical transmission through three-component Thue–Morse multilayers. Physica Status Solidi (B): Basic Research, 2007, 244, 717-725.	0.7	6
79	Transmission properties of light through multilayers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 263-268.	0.9	4
80	Second harmonic generation in GF(m, 1) ferroelectric superlattices. Journal of Physics Condensed Matter, 2006, 18, 2587-2600.	0.7	6
81	Transparent-component-decimation method for studying the optical transmission of binary aperiodic superlattices. Physical Review B, 2006, 74, . Transmission of light through combinate altimg="si21 gif" overflow="scroll"	1.1	8
82	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" ymlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.3	9
83	xmlns:tb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x. Transmission properties of light through the Family B of generalized Thue-Morse multilayers. Physica Status Solidi (B): Basic Research, 2005, 242, 2509-2514.	0.7	8
84	Splitting rules for the electronic energy spectra of two-dimensional Thue–Morse lattices with three kinds of atom and one bond length. Journal of Physics Condensed Matter, 2005, 17, 4747-4764.	0.7	1
85	TRANSMISSION PROPERTIES OF LIGHT THROUGH THE FAMILY A OF GENERALIZED THUE–MORSE MULTILAYERS. Modern Physics Letters B, 2005, 19, 655-661.	1.0	7
86	Splitting rules for the 2nd hierarchy structure of the electronic spectra of 2D FC(n) quasicrystals. European Physical Journal B, 2004, 39, 475-481.	0.6	3
87	Transmission properties of light through SML quasiperiodic multilayers. Physica B: Condensed Matter, 2004, 351, 19-26.	1.3	9
88	Splitting rules for the electronic spectra of two-dimensional SML quasilattices. Physica B: Condensed Matter, 2004, 353, 336-344.	1.3	1
89	Splitting rules for the electronic spectra of two-dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths. Physical Review B, 2002, 65, .	1.1	11
90	Properties of the peaks of second harmonic light through Fibonacci-class ferroelectric domains. European Physical Journal B, 2000, 15, 625-631.	0.6	12

#	Article	IF	CITATIONS
91	The output power of the second-harmonic-generation light derived from Fibonacci-class ferroelectric domains. Journal of Physics Condensed Matter, 2000, 12, 1899-1905.	0.7	10
92	Transmission properties of light through the Fibonacci-class multilayers. Physical Review B, 1999, 59, 4545-4548.	1.1	66
93	Splitting rules for spectra of two-dimensional Fibonacci quasilattices. Physical Review B, 1997, 56, 8054-8059.	1.1	11
94	Effects of the multi-order and off-axis vortex on the propagation of Pearcey Gaussian vortex beams with the astigmatic phase in a chiral medium. Waves in Random and Complex Media, 0, , 1-11.	1.6	2