
Guillermo Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lymphatic endothelial cell fate specification in the mammalian embryo: An historical perspective. Developmental Biology, 2022, 482, 44-54.	0.9	8
2	Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. Journal of Clinical Investigation, 2022, 132, .	3.9	51
3	Functional roles of lymphatics in health and disease. , 2022, , 343-350.		0
4	Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance. Science Advances, 2021, 7, .	4.7	16
5	A Second Heart Field-Derived Vasculogenic Niche Contributes to Cardiac Lymphatics. Developmental Cell, 2020, 52, 350-363.e6.	3.1	67
6	The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell, 2020, 182, 270-296.	13.5	352
7	Lymphoangiocrine signals promote cardiac growth and repair. Nature, 2020, 588, 705-711.	13.7	103
8	Optic vesicle morphogenesis requires primary cilia. Developmental Biology, 2020, 462, 119-128.	0.9	7
9	Platelet factor 4 is a biomarker for lymphatic-promoted disorders. JCI Insight, 2020, 5, .	2.3	28
10	Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. Journal of Clinical Investigation, 2020, 130, 1199-1216.	3.9	35
11	Hemostasis stimulates lymphangiogenesis through release and activation of VEGFC. Blood, 2019, 134, 1764-1775.	0.6	31
12	Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. Journal of Clinical Investigation, 2019, 129, 4912-4921.	3.9	33
13	Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis. Journal of Clinical Investigation, 2019, 129, 5489-5500.	3.9	40
14	New insights about the lymphatic vasculature in cardiovascular diseases. F1000Research, 2019, 8, 1811.	0.8	12
15	Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels. Journal of the American Society of Nephrology: JASN, 2018, 29, 1097-1107.	3.0	59
16	Use of two gRNAs for CRISPR/Cas9 improves biâ€allelic homologous recombination efficiency in mouse embryonic stem cells. Genesis, 2018, 56, e23212.	0.8	22
17	A novel <i>podoplaninâ€GFPCre</i> mouse strain for gene deletion in lymphatic endothelial cells. Genesis, 2018, 56, e23102.	0.8	7
18	CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature Neuroscience, 2018, 21, 1380-1391.	7.1	579

GUILLERMO OLIVER

#	Article	IF	CITATIONS
19	A blood capillary plexus-derived population of progenitor cells contributes to genesis of the dermal lymphatic vasculature during embryonic development. Development (Cambridge), 2018, 145, .	1.2	64
20	Rasip1 controls lymphatic vessel lumen maintenance by regulating endothelial cell junctions. Development (Cambridge), 2018, 145, .	1.2	17
21	Lymphatic Endothelial Cell Plasticity in Development and Disease. Physiology, 2017, 32, 444-452.	1.6	28
22	The Lymphatic Vasculature: Its Role in Adipose Metabolism and Obesity. Cell Metabolism, 2017, 26, 598-609.	7.2	128
23	An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation. Cell Reports, 2017, 21, 1534-1549.	2.9	28
24	Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. Journal of Clinical Investigation, 2017, 127, 3877-3896.	3.9	98
25	Six3 dosage mediates the pathogenesis of holoprosencephaly. Development (Cambridge), 2016, 143, 4462-4473.	1.2	24
26	Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nature Neuroscience, 2016, 19, 1331-1340.	7.1	91
27	Lymphangiogenesis: Origin, Specification, and Cell Fate Determination. Annual Review of Cell and Developmental Biology, 2016, 32, 677-691.	4.0	89
28	Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight, 2016, 1, .	2.3	110
29	<i>Prox1</i> Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. Journal of Neuroscience, 2015, 35, 12869-12889.	1.7	104
30	Prox1 Promotes Expansion of the Colorectal Cancer Stem Cell Population to Fuel Tumor Growth and Ischemia Resistance. Cell Reports, 2014, 8, 1943-1956.	2.9	63
31	The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes and Development, 2014, 28, 2175-2187.	2.7	138
32	Development of the mammalian lymphatic vasculature. Journal of Clinical Investigation, 2014, 124, 888-897.	3.9	186
33	Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. Journal of Clinical Investigation, 2014, 124, 273-284.	3.9	179
34	Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood, 2012, 120, 2340-2348.	0.6	196
35	Plasticity of Button-Like Junctions in the Endothelium of Airway Lymphatics in Development and Inflammation. American Journal of Pathology, 2012, 180, 2561-2575.	1.9	154
36	Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes and Development, 2011, 25, 2187-2197.	2.7	150

GUILLERMO OLIVER

#	Article	IF	CITATIONS
37	The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of <i>Prox1</i> expression in lymphatic endothelial cells. Genes and Development, 2010, 24, 696-707.	2.7	243
38	Prox1 Is Required for Granule Cell Maturation and Intermediate Progenitor Maintenance During Brain Neurogenesis. PLoS Biology, 2010, 8, e1000460.	2.6	181
39	Current views on the function of the lymphatic vasculature in health and disease. Genes and Development, 2010, 24, 2115-2126.	2.7	145
40	Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development (Cambridge), 2010, 137, 363-372.	1.2	126
41	Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. Journal of Clinical Investigation, 2010, 120, 3568-3577.	3.9	96
42	Prox1 maintains muscle structure and growth in the developing heart. Development (Cambridge), 2009, 136, 495-505.	1.2	112
43	Pathogenesis of holoprosencephaly. Journal of Clinical Investigation, 2009, 119, 1403-1413.	3.9	80
44	<i>Lymphatic Vasculature Development</i> . Annals of the New York Academy of Sciences, 2008, 1131, 75-81.	1.8	65
45	Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nature Genetics, 2008, 40, 1348-1353.	9.4	182
46	Transcription Factor PROX1 Induces Colon Cancer Progression by Promoting the Transition from Benign to Highly Dysplastic Phenotype. Cancer Cell, 2008, 13, 407-419.	7.7	166
47	Haploinsufficiency of Six3 Fails to Activate Sonic hedgehog Expression in the Ventral Forebrain and Causes Holoprosencephaly. Developmental Cell, 2008, 15, 236-247.	3.1	160
48	<i>Six3</i> inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development (Cambridge), 2008, 135, 441-450.	1.2	68
49	Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes and Development, 2008, 22, 3282-3291.	2.7	289
50	Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes and Development, 2007, 21, 2422-2432.	2.7	477
51	Prox1 expression patterns in the developing and adult murine brain. Developmental Dynamics, 2007, 236, 518-524.	0.8	138
52	Six3 activation of Pax6 expression is essential for mammalian lens induction and specification. EMBO Journal, 2006, 25, 5383-5395.	3.5	147
53	Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nature Genetics, 2005, 37, 1072-1081.	9.4	499
54	THE LYMPHATIC VASCULATURE: Recent Progress and Paradigms. Annual Review of Cell and Developmental Biology, 2005, 21, 457-483.	4.0	200

GUILLERMO OLIVER

#	Article	IF	CITATIONS
55	Lymphatic vasculature development. Nature Reviews Immunology, 2004, 4, 35-45.	10.6	391
56	Choose your fate: artery, vein or lymphatic vessel?. Current Opinion in Genetics and Development, 2004, 14, 499-505.	1.5	42
57	T1Â/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO Journal, 2003, 22, 3546-3556.	3.5	580
58	Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes and Development, 2003, 17, 368-379.	2.7	437
59	The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes and Development, 2002, 16, 773-783.	2.7	317
60	Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Developmental Dynamics, 2002, 225, 351-357.	0.8	469
61	A Stepwise Model of the Development of Lymphatic Vasculature. Annals of the New York Academy of Sciences, 2002, 979, 159-165.	1.8	59
62	An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO Journal, 2002, 21, 1505-1513.	3.5	783
63	Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development (Cambridge), 2002, 129, 2835-49.	1.2	87
64	Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Developmental Dynamics, 2001, 221, 342-349.	0.8	89
65	Hepatocyte migration during liver development requires Prox1. Nature Genetics, 2000, 25, 254-255.	9.4	352
66	Prox1 function is crucial for mouse lens-fibre elongation. Nature Genetics, 1999, 21, 318-322.	9.4	393
67	Conservation of gene expression during embryonic lens formation and cornea-lens transdifferentiation inXenopus laevis. Developmental Dynamics, 1999, 215, 308-318.	0.8	58
68	Prox1 Function Is Required for the Development of the Murine Lymphatic System. Cell, 1999, 98, 769-778.	13.5	1,401
69	Conservation of gene expression during embryonic lens formation and corneaâ€lens transdifferentiation in Xenopus laevis. Developmental Dynamics, 1999, 215, 308-318.	0.8	6