
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	H ₂ S mediates O ₂ sensing in the carotid body. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10719-10724.	3.3	344
2	Induction of HIFâ€1α expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca ²⁺ signaling, prolyl hydroxylases, and mTOR. Journal of Cellular Physiology, 2008, 217, 674-685.	2.0	294
3	Ca2+/Calmodulin Kinase-dependent Activation of Hypoxia Inducible Factor 1 Transcriptional Activity in Cells Subjected to Intermittent Hypoxia. Journal of Biological Chemistry, 2005, 280, 4321-4328.	1.6	208
4	Hypoxiaâ€inducible factor 1 mediates increased expression of NADPH oxidaseâ€2 in response to intermittent hypoxia. Journal of Cellular Physiology, 2011, 226, 2925-2933.	2.0	177
5	Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1199-1204.	3.3	163
6	TET1-Mediated Hydroxymethylation Facilitates Hypoxic Gene Induction in Neuroblastoma. Cell Reports, 2014, 7, 1343-1352.	2.9	146
7	Hypoxia-inducible factors and obstructive sleep apnea. Journal of Clinical Investigation, 2020, 130, 5042-5051.	3.9	135
8	Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2515-2520.	3.3	120
9	Transcriptional responses to intermittent hypoxia. Respiratory Physiology and Neurobiology, 2008, 164, 277-281.	0.7	111
10	Protein kinase G–regulated production of H ₂ S governs oxygen sensing. Science Signaling, 2015, 8, ra37.	1.6	101
11	Peripheral Chemoreception and Arterial Pressure Responses to Intermittent Hypoxia. , 2015, 5, 561-577.		87
12	Impairment of pancreatic βâ€cell function by chronic intermittent hypoxia. Experimental Physiology, 2013, 98, 1376-1385.	0.9	80
13	NADPH Oxidase 2 Mediates Intermittent Hypoxia-Induced Mitochondrial Complex I Inhibition: Relevance to Blood Pressure Changes in Rats. Antioxidants and Redox Signaling, 2011, 14, 533-542.	2.5	77
14	HIF-1α Activation by Intermittent Hypoxia Requires NADPH Oxidase Stimulation by Xanthine Oxidase. PLoS ONE, 2015, 10, e0119762.	1.1	77
15	Regulation of hypoxiaâ€inducible factorâ€i± isoforms and redox state by carotid body neural activity in rats. Journal of Physiology, 2014, 592, 3841-3858.	1.3	75
16	Inherent variations in CO-H ₂ S-mediated carotid body O ₂ sensing mediate hypertension and pulmonary edema. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1174-1179.	3.3	71
17	NADPH Oxidase-Dependent Regulation of T-Type Ca ²⁺ Channels and Ryanodine Receptors Mediate the Augmented Exocytosis of Catecholamines from Intermittent Hypoxia-Treated Neonatal Rat Chromaffin Cells. Journal of Neuroscience, 2010, 30, 10763-10772.	1.7	68
18	Complementary roles of gasotransmitters CO and H ₂ S in sleep apnea. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1413-1418.	3.3	65

#	Article	IF	CITATIONS
19	Endogenous H ₂ S is required for hypoxic sensing by carotid body glomus cells. American Journal of Physiology - Cell Physiology, 2012, 303, C916-C923.	2.1	62
20	Xanthine Oxidase Mediates Hypoxia-Inducible Factor-2α Degradation by Intermittent Hypoxia. PLoS ONE, 2013, 8, e75838.	1.1	62
21	Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1096-L1100.	1.3	61
22	Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after longâ€ŧerm intermittent hypoxia. Journal of Physiology, 2017, 595, 63-77.	1.3	53
23	Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respiratory Physiology and Neurobiology, 2010, 174, 230-234.	0.7	51
24	Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. Journal of Applied Physiology, 2012, 112, 187-196.	1.2	43
25	Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. Journal of Molecular Medicine, 2015, 93, 473-480.	1.7	43
26	Cellular mechanisms associated with intermittent hypoxia. Essays in Biochemistry, 2007, 43, 91-104.	2.1	41
27	H ₂ S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Science Signaling, 2016, 9, ra80.	1.6	39
28	Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell and Tissue Research, 2018, 372, 427-431.	1.5	27
29	Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Research, 2018, 7, 1900.	0.8	22
30	Olfactory receptor 78 participates in carotid body response to a wide range of low O ₂ levels but not severe hypoxia. Journal of Neurophysiology, 2020, 123, 1886-1895.	0.9	21
31	Ca _V 3.2 T-type Ca ²⁺ channels in H ₂ S-mediated hypoxic response of the carotid body. American Journal of Physiology - Cell Physiology, 2015, 308, C146-C154.	2.1	18
32	Hypoxia inhibits maturation and trafficking of hERG K+ channel protein: Role of Hsp90 and ROS. Biochemical and Biophysical Research Communications, 2009, 388, 212-216.	1.0	17
33	Developmental programming of O2 sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respiratory Physiology and Neurobiology, 2013, 185, 105-109.	0.7	17
34	DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. Journal of Physiology, 2018, 596, 3087-3100.	1.3	16
35	Mitochondrial reactive oxygen species mediate hypoxic down-regulation of hERG channel protein. Biochemical and Biophysical Research Communications, 2008, 373, 309-314.	1.0	15
36	Hypoxia-inducible factor-1 mediates pancreatic β-cell dysfunction by intermittent hypoxia. American Journal of Physiology - Cell Physiology, 2020, 319, C922-C932.	2.1	15

#	Article	IF	CITATIONS
37	CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. Journal of Neurophysiology, 2016, 115, 345-354.	0.9	13
38	Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. Journal of Neurophysiology, 2021, 125, 2054-2067.	0.9	13
39	Lysine demethylase KDM6B regulates HIF-1α-mediated systemic and cellular responses to intermittent hypoxia. Physiological Genomics, 2021, 53, 385-394.	1.0	12
40	Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. Advances in Experimental Medicine and Biology, 2015, 860, 1-8.	0.8	12
41	Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respiratory Physiology and Neurobiology, 2015, 209, 115-119.	0.7	10
42	Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Advances in Experimental Medicine and Biology, 2018, 1071, 109-114.	0.8	10
43	Neural activation of molecular circuitry in intermittent hypoxia. Current Opinion in Physiology, 2019, 7, 9-14.	0.9	10
44	Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Frontiers in Physiology, 2021, 12, 688322.	1.3	10
45	Hypoxia induced hERG trafficking defect linked to cell cycle arrest in SH-SY5Y cells. PLoS ONE, 2019, 14, e0215905.	1.1	6
46	Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. Journal of Neurophysiology, 2021, 125, 1533-1542.	0.9	5
47	Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Frontiers in Physiology, 2021, 12, 701995.	1.3	5
48	Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. Journal of Neurophysiology, 2019, 122, 1874-1883.	0.9	4
49	Immunohistochemistry of the Carotid Body. Methods in Molecular Biology, 2018, 1742, 155-166.	0.4	2
50	PROTEIN PHOSPHATASE 1 REGULATES REACTIVE OXYGEN SPECIES DEPENDENT DEGRADATION OF HISTONE DEACETYLASE 5 BY INTERMITTENT HYPOXIA. American Journal of Physiology - Cell Physiology, 0, , .	2.1	2
51	Mechanisms of Mitochondrial Complex 1 Inhibition by Intermittent Hypoxia. FASEB Journal, 2008, 22, 960.6.	0.2	Ο
52	Mitochondrial ROS is involved in downregulation of hERG by hypoxia. FASEB Journal, 2008, 22, 960.5.	0.2	0
53	Intermittent Hypoxia Elicits a Rapid Upâ€Regulation of Cav3.2 Tâ€ŧype Ca2+ Channels Mediated by Reactive Oxygen Species. FASEB Journal, 2012, 26, 898.8.	0.2	0
54	Hydrogen sulfide mediates catecholamine secretion elicited by hypoxia in the carotid body. FASEB Journal, 2012, 26, 897.8.	0.2	0

#	Article	IF	CITATIONS
55	Intermittent Hypoxiaâ€induced hERG degradation involves ROS Activated Calpains. FASEB Journal, 2013, 27, 938.3.	0.2	0
56	Protein Kinase G Regulated H 2 S Governs Oxygen Sensing by the Carotid Body. FASEB Journal, 2015, 29, 682.2.	0.2	0
57	Carotid body response to intermittent hypoxia requires Ca v 3.2 Tâ€ŧype Ca 2+ channels. FASEB Journal, 2015, 29, 681.2.	0.2	0
58	Regulation of Insulin Metabolism by Intermittent Hypoxia. Molecular Mechanisms. FASEB Journal, 2015, 29, 682.5.	0.2	0
59	Nonâ€transcriptional Role of HIFâ€2α in Hypoxiaâ€Evoked hERG K + Channel Trafficking. FASEB Journal, 2015, 29, 681.1.	0.2	0
60	Ca _v 3.2 Tâ€ŧype Ca ²⁺ Channels in H ₂ Sâ€Mediated Hypoxic Response of the Carotid Body. FASEB Journal, 2015, 29, 859.10.	0.2	0
61	Impaired Acute Hypoxic Sensing in Olfactory Receptor 78 Knockout Mice. FASEB Journal, 2019, 33, lb575.	0.2	0
62	Persistent HIFâ€1 Activation by Longâ€Term Intermittent Hypoxia. FASEB Journal, 2019, 33, 551.16.	0.2	0
63	H 2 S Contributes to Carotid Body Response to Hypoxia but Not Anoxia. FASEB Journal, 2019, 33, 551.14.	0.2	0
64	Phrenic Nerve and Carotid Body Responses to Hypoxia and CO 2 in Naked Mole Rats. FASEB Journal, 2019, 33, lb576.	0.2	0
65	H 2 S synthesis inhibitor prevents hypoxiaâ€evoked periodic breathing in spontaneous hypertensive rats. FASEB Journal, 2019, 33, lb577.	0.2	0
66	H 2 S synthesis inhibitor prevents hypoxiaâ€evoked periodic breathing in spontaneous hypertensive rats. FASEB Journal, 2019, 33, 551.17.	0.2	0
67	Activation of Lysine Demethylases (KDM's) by Intermittent Hypoxia. FASEB Journal, 2019, 33, 551.15.	0.2	0
68	Activation of Sympathetic Nervous System Contributes to Erthroprotein Gene Upregulation by Hypobaric Hypoxia. FASEB Journal, 2022, 36, .	0.2	0