
Shuanglin Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088686/publications.pdf Version: 2024-02-01

SHUANCUN SHEN

#	Article	IF	CITATIONS
1	Boost performance of porous electrode for microfluidic fuel cells: electrochemical modification or structure optimization?. International Journal of Energy Research, 2022, 46, 3324-3334.	4.5	4
2	Wall-function method used to simplify the solid oxide fuel cell model. Journal of Power Sources, 2021, 510, 230396.	7.8	8
3	Novel dual-phase symmetrical electrode materials for protonic ceramic fuel cells. Journal of Materials Science, 2021, 56, 19651-19662.	3.7	7
4	Review of experimental and modelling developments for ceria-based solid oxide fuel cells free from internal short circuits. Journal of Materials Science, 2020, 55, 1-23.	3.7	56
5	The tortuosity factor effect on solid oxide fuel cell performance. Sustainable Energy Technologies and Assessments, 2020, 38, 100681.	2.7	4
6	Numerical modeling and parametric analysis of solid oxide fuel cell button cell testing process. International Journal of Energy Research, 2019, 43, 2635-2642.	4.5	5
7	Numerical study on the effect of bi-polar plate geometry in the SOFC heating-up process. Journal of Renewable and Sustainable Energy, 2019, 11, .	2.0	10
8	A 2D model for solid oxide fuel cell with a mixed ionic and electronic conducting electrolyte. Solid State Ionics, 2018, 315, 44-51.	2.7	13
9	A new experimental method to estimate the leakage current in the solid oxide fuel cell with a mixed ionic and electronic conducting electrolyte. Journal of Power Sources, 2018, 406, 88-95.	7.8	12
10	The microstructure effect on ion conduction in composite electrolyte. International Journal of Energy Research, 2018, 42, 4229-4234.	4.5	4
11	A polarization model for solid oxide fuel cells with a Bi-layer electrolyte. International Journal of Hydrogen Energy, 2016, 41, 3646-3654.	7.1	11
12	2D Segment Model for a Bi-Layer Electrolyte Solid Oxide Fuel Cell. Journal of the Electrochemical Society, 2015, 162, F340-F347.	2.9	7
13	2D segment model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. International Journal of Hydrogen Energy, 2015, 40, 5160-5168.	7.1	26
14	A polarization model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. Journal of Power Sources, 2014, 256, 43-51.	7.8	71
15	An analytical model for solid oxide fuel cells with bi-layer electrolyte. International Journal of Hydrogen Energy, 2013, 38, 1967-1975.	7.1	18
16	Theoretical analysis of the characteristics of the solid oxide fuel cells with a bi-layer electrolyte. International Journal of Hydrogen Energy, 2013, 38, 13084-13090.	7.1	7
17	Feasibility analysis of applying Taguchi method to fuel cell simulation. International Journal of Energy Research, 0, , .	4.5	1