
Mark A Friedl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/908866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disentangling the Relative Drivers of Seasonal Evapotranspiration Across a Continentalâ€Scale Aridity Gradient. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
2	Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change, 2021, 11, 435-441.	8.1	51
3	Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sensing of Environment, 2021, 258, 112365.	4.6	27
4	Using time series of MODIS land surface phenology to model temperature and photoperiod controls on spring greenup in North American deciduous forests. Remote Sensing of Environment, 2021, 260, 112466.	4.6	19
5	Seasonality in aerodynamic resistance across a range of North American ecosystems. Agricultural and Forest Meteorology, 2021, 310, 108613.	1.9	14
6	Multiscale assessment of land surface phenology from harmonized Landsat 8 and Sentinel-2, PlanetScope, and PhenoCam imagery. Remote Sensing of Environment, 2021, 266, 112716.	4.6	57
7	Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 2020, 26, 807-822.	4.2	107
8	Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sensing of Environment, 2020, 240, 111685.	4.6	226
9	Sensitivity of Deciduous Forest Phenology to Environmental Drivers: Implications for Climate Change Impacts Across North America. Geophysical Research Letters, 2020, 47, e2019GL086788.	1.5	19
10	Modification of surface energy balance during springtime: The relative importance of biophysical and meteorological changes. Agricultural and Forest Meteorology, 2020, 284, 107905.	1.9	45
11	An Empirical Assessment of the MODIS Land Cover Dynamics and TIMESAT Land Surface Phenology Algorithms. Remote Sensing, 2019, 11, 2201.	1.8	29
12	Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset. Scientific Data, 2019, 6, 222.	2.4	82
13	Long-term continuity in land surface phenology measurements: A comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology products. Remote Sensing of Environment, 2019, 226, 74-92.	4.6	53
14	The role of land cover change in Arctic-Boreal greening and browning trends. Environmental Research Letters, 2019, 14, 125007.	2.2	28
15	Sensitivity of Clobal Pasturelands to Climate Variation. Earth's Future, 2019, 7, 1353-1366.	2.4	23
16	Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sensing of Environment, 2019, 222, 183-194.	4.6	393
17	Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environmental Research Letters, 2018, 13, 014007.	2.2	104
18	Multidecadal Changes and Interannual Variation in Springtime Phenology of North American Temperate and Boreal Deciduous Forests. Geophysical Research Letters, 2018, 45, 2679-2687.	1.5	33

MARK A FRIEDL

#	Article	IF	CITATIONS
19	Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data, 2018, 5, 180028.	2.4	304
20	Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography. Agricultural and Forest Meteorology, 2018, 248, 397-407.	1.9	108
21	A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data. Remote Sensing, 2018, 10, 635.	1.8	95
22	Generation and evaluation of the VIIRS land surface phenology product. Remote Sensing of Environment, 2018, 216, 212-229.	4.6	110
23	Exploration of scaling effects on coarse resolution land surface phenology. Remote Sensing of Environment, 2017, 190, 318-330.	4.6	149
24	Accounting for urban biogenic fluxes in regional carbon budgets. Science of the Total Environment, 2017, 592, 366-372.	3.9	74
25	Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Global Change Biology, 2016, 22, 792-805.	4.2	102
26	Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sensing of Environment, 2016, 186, 452-464.	4.6	123
27	A new seasonalâ€deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. Global Change Biology, 2016, 22, 3675-3688.	4.2	64
28	Multi-criteria evaluation of the suitability of growth functions for modeling remotely sensed phenology. Ecological Modelling, 2016, 323, 123-132.	1.2	16
29	Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sensing of Environment, 2016, 175, 92-108.	4.6	129
30	Sources of bias and variability in long-term Landsat time series over Canadian boreal forests. Remote Sensing of Environment, 2016, 177, 206-219.	4.6	48
31	Urbanization and the loss of prime farmland: a case study in the Calgary–Edmonton corridor of Alberta. Regional Environmental Change, 2015, 15, 881-893.	1.4	84
32	Mapping Crop Cycles in China Using MODIS-EVI Time Series. Remote Sensing, 2014, 6, 2473-2493.	1.8	108
33	A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environmental Research Letters, 2014, 9, 054006.	2.2	82
34	Distance metric-based forest cover change detection using MODIS time series. International Journal of Applied Earth Observation and Geoinformation, 2014, 29, 78-92.	1.4	27
35	Enhancing MODIS land cover product with a spatial–temporal modeling algorithm. Remote Sensing of Environment, 2014, 147, 243-255.	4.6	64
36	Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature, 2014, 515, 398-401.	13.7	118

MARK A FRIEDL

#	Article	IF	CITATIONS
37	A parametric model for classifying land cover and evaluating training data based on multi-temporal remote sensing data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97, 219-228.	4.9	17
38	Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sensing of Environment, 2014, 151, 114-123.	4.6	58
39	Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 2014, 4, 598-604.	8.1	671
40	Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 2013, 173, 74-84.	1.9	535
41	Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sensing of Environment, 2013, 132, 176-185.	4.6	277
42	Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 2012, 117, 307-321.	4.6	230
43	Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sensing of Environment, 2012, 117, 366-380.	4.6	177
44	Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology, 2012, 152, 159-177.	1.9	446
45	A global land-cover validation data set, part I: fundamental design principles. International Journal of Remote Sensing, 2012, 33, 5768-5788.	1.3	129
46	A global land-cover validation data set, II: augmenting a stratified sampling design to estimate accuracy by region and land-cover class. International Journal of Remote Sensing, 2012, 33, 6975-6993.	1.3	75
47	Ecological impacts of a widespread frost event following early spring leafâ€out. Global Change Biology, 2012, 18, 2365-2377.	4.2	210
48	Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sensing of Environment, 2011, 115, 3539-3553.	4.6	75
49	Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sensing of Environment, 2011, 115, 392-403.	4.6	81
50	MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 2010, 114, 168-182.	4.6	2,752
51	Mapping global urban areas using MODIS 500-m data: New methods and datasets based on â€~urban ecoregions'. Remote Sensing of Environment, 2010, 114, 1733-1746.	4.6	570
52	Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sensing of Environment, 2010, 114, 1805-1816.	4.6	417
53	Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3227-3246.	1.8	751
54	Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. International Journal of Remote Sensing, 2009, 30, 2061-2074.	1.3	142

MARK A FRIEDL

#	Article	IF	CITATIONS
55	Using MODIS data to characterize seasonal inundation patterns in the Florida Everglades. Remote Sensing of Environment, 2008, 112, 4107-4119.	4.6	107
56	Monitoring the Extent and Intensity of Urban Areas Globally using the Fusion of MODIS 500m Resolution Satellite Imagery and Ancillary Data Sources. , 2008, , .		0
57	Convective Planetary Boundary Layer Interactions with the Land Surface at Diurnal Time Scales: Diagnostics and Feedbacks. Journal of Hydrometeorology, 2007, 8, 1082-1097.	0.7	71
58	Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4820-4823.	3.3	376
59	Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Research, 2006, 111, .	3.3	382
60	An Empirical Investigation of Convective Planetary Boundary Layer Evolution and Its Relationship with the Land Surface. Journal of Applied Meteorology and Climatology, 2005, 44, 917-932.	1.7	65
61	Response of terrestrial ecosystems to recent Northern Hemispheric drought. Geophysical Research Letters, 2005, 32, .	1.5	105
62	Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. Journal of Geophysical Research, 2005, 110, .	3.3	186
63	Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 2004, 10, 1133-1145.	4.2	425
64	The footprint of urban climates on vegetation phenology. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	234
65	Determination of Roughness Lengths for Heat and Momentum Over Boreal Forests. Boundary-Layer Meteorology, 2003, 107, 581-603.	1.2	44
66	Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 2003, 84, 471-475.	4.6	1,948
67	Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. Journal of Geophysical Research, 2003, 108, .	3.3	57
68	Coupled vegetation-precipitation variability observed from satellite and climate records. Geophysical Research Letters, 2003, 30, .	1.5	158
69	Regression Tree Analysis of satellite and terrain data to guide vegetation sampling and surveys. Journal of Vegetation Science, 1994, 5, 673-686.	1.1	152
70	MAPWD: An interactive mapping tool for accessing geo-referenced data sets. Computers and Geosciences, 1989, 15, 1203-1219.	2.0	3
71	A global land-cover validation data set, part I: fundamental design principles. , 0, .		1