Matteo Paoluzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088374/publications.pdf

Version: 2024-02-01

430442 395343 1,098 38 18 33 citations h-index g-index papers 39 39 39 755 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Critical active dynamics is captured by a colored-noise driven field theory. Communications Physics, 2022, 5, .	2.0	12
2	Scaling of the entropy production rate in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>φ</mml:mi><mml:mn>4<td>n> ⊘µsıml:n</td><td>ոsււp></td></mml:mn></mml:msup></mml:math>	n> ⊘µs ıml:n	ոs ււp >
3	From motility-induced phase-separation to glassiness in dense active matter. Communications Physics, 2022, 5, .	2.0	26
4	Softness, anomalous dynamics, and fractal-like energy landscape in model cell tissues. Physical Review E, 2021, 103, 022607.	0.8	9
5	Do we understand the solid-like elastic properties of confined liquids?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2021288118.	3.3	1
6	Universality class of the motility-induced critical point in large scale off-lattice simulations of active particles. Soft Matter, 2021, 17, 3807-3812.	1.2	36
7	Alignment interactions drive structural transitions in biological tissues. Physical Review E, 2021, 104, 044606.	0.8	7
8	How non-equilibrium correlations in active matter reveal the topological crossover in glasses. Chaos, Solitons and Fractals, 2021, 153, 111500.	2.5	2
9	A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic. Scientific Reports, 2021, 11, 24467.	1.6	7
10	Narrow-escape time and sorting of active particles in circular domains. Physical Review E, 2020, 102, 042617.	0.8	15
11	Information and motility exchange in collectives of active particles. Soft Matter, 2020, 16, 6317-6327.	1.2	18
12	Statistical field theory and effective action method for scalar active matter. Physical Review Research, 2020, 2 , .	1.3	10
13	Hidden velocity ordering in dense suspensions of self-propelled disks. Physical Review Research, 2020, 2, .	1.3	59
14	Surfing and crawling macroscopic active particles under strong confinement: Inertial dynamics. Physical Review Research, 2020, 2, .	1.3	31
15	Probing the Debye spectrum in glasses using small system sizes. Physical Review Research, 2020, 2, .	1.3	5
16	Relation between Heterogeneous Frozen Regions in Supercooled Liquids and Non-Debye Spectrum in the Corresponding Glasses. Physical Review Letters, 2019, 123, 155502.	2.9	11
17	Low-frequency excitations and their localization properties in glasses. Condensed Matter Physics, 2019, 22, 43608.	0.3	0

Effective equilibrium picture in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>x</mml:mi><mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml:mi>y</mml

#	Article	IF	Citations
19	Flocking transitions in confluent tissues. Soft Matter, 2018, 14, 3471-3477.	1.2	114
20	Fractal aggregation of active particles. Physical Review E, 2018, 98, .	0.8	17
21	Anomalous glassy dynamics in simple models of dense biological tissue. Europhysics Letters, 2018, 121, 36001.	0.7	49
22	Probing the non-Debye low-frequency excitations in glasses through random pinning. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8700-8704.	3.3	46
23	Pressure in an exactly solvable model of active fluid. Journal of Chemical Physics, 2017, 147, 024903.	1.2	23
24	Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath. Scientific Reports, 2017, 7, 17588.	1.6	62
25	Shape and Displacement Fluctuations in Soft Vesicles Filled by Active Particles. Scientific Reports, 2016, 6, 34146.	1.6	69
26	Critical phenomena in active matter. Physical Review E, 2016, 94, 052602.	0.8	28
27	Velocity distribution in active particles systems. Scientific Reports, 2016, 6, 23297.	1.6	54
28	Effective potential method for active particles. Molecular Physics, 2016, 114, 2400-2410.	0.8	27
29	Dynamical arrest with zero complexity: The unusual behavior of the spherical Blume-Emery-Griffiths disordered model. Physical Review E, 2015, 92, 062150.	0.8	0
30	Self-Sustained Density Oscillations of Swimming Bacteria Confined in Microchambers. Physical Review Letters, 2015, 115, 188303.	2.9	32
31	Generalized Energy Equipartition in Harmonic Oscillators Driven by Active Baths. Physical Review Letters, 2014, 113, 238303.	2.9	149
32	Run-and-tumble particles in speckle fields. Journal of Physics Condensed Matter, 2014, 26, 375101.	0.7	13
33	First-passage time of run-and-tumble particles. European Physical Journal E, 2014, 37, 15.	0.7	62
34	Effective run-and-tumble dynamics of bacteria baths. Journal of Physics Condensed Matter, 2013, 25, 415102.	0.7	14
35	Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers. European Physical Journal E, 2011, 34, 98.	0.7	14
36	Random Blume-Capel model on a cubic lattice: First-order inverse freezing in a three-dimensional spin-glass system. Physical Review B, 2011, 83, .	1.1	20

#	Article	IF	CITATIONS
37	The overlap parameter across an inverse first-order phase transition in a 3D spin-glass. Philosophical Magazine, 2011, 91, 1966-1976.	0.7	2
38	Thermodynamic First Order Transition and Inverse Freezing in a 3D Spin Glass. Physical Review Letters, 2010, 104, 120602.	2.9	29