
Matteo Paoluzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generalized Energy Equipartition in Harmonic Oscillators Driven by Active Baths. Physical Review Letters, 2014, 113, 238303.	2.9	149
2	Flocking transitions in confluent tissues. Soft Matter, 2018, 14, 3471-3477.	1.2	114
3	Shape and Displacement Fluctuations in Soft Vesicles Filled by Active Particles. Scientific Reports, 2016, 6, 34146.	1.6	69
4	First-passage time of run-and-tumble particles. European Physical Journal E, 2014, 37, 15.	0.7	62
5	Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath. Scientific Reports, 2017, 7, 17588.	1.6	62
6	Hidden velocity ordering in dense suspensions of self-propelled disks. Physical Review Research, 2020, 2, .	1.3	59
7	Velocity distribution in active particles systems. Scientific Reports, 2016, 6, 23297.	1.6	54
8	Anomalous glassy dynamics in simple models of dense biological tissue. Europhysics Letters, 2018, 121, 36001.	0.7	49
9	Probing the non-Debye low-frequency excitations in glasses through random pinning. Proceedings of the United States of America, 2018, 115, 8700-8704.	3.3	46
10	Universality class of the motility-induced critical point in large scale off-lattice simulations of active particles. Soft Matter, 2021, 17, 3807-3812.	1.2	36
11	Self-Sustained Density Oscillations of Swimming Bacteria Confined in Microchambers. Physical Review Letters, 2015, 115, 188303.	2.9	32
12	Surfing and crawling macroscopic active particles under strong confinement: Inertial dynamics. Physical Review Research, 2020, 2, .	1.3	31
13	Thermodynamic First Order Transition and Inverse Freezing in a 3D Spin Glass. Physical Review Letters, 2010, 104, 120602.	2.9	29
14	Critical phenomena in active matter. Physical Review E, 2016, 94, 052602.	0.8	28
15	Effective potential method for active particles. Molecular Physics, 2016, 114, 2400-2410.	0.8	27
16	From motility-induced phase-separation to glassiness in dense active matter. Communications Physics, 2022, 5, .	2.0	26
17	Pressure in an exactly solvable model of active fluid. Journal of Chemical Physics, 2017, 147, 024903.	1.2	23
18	Random Blume-Capel model on a cubic lattice: First-order inverse freezing in a three-dimensional spin-glass system. Physical Review B, 2011, 83, .	1.1	20

Matteo Paoluzzi

#	Article	IF	CITATIONS
19	Information and motility exchange in collectives of active particles. Soft Matter, 2020, 16, 6317-6327.	1.2	18
20	Fractal aggregation of active particles. Physical Review E, 2018, 98, .	0.8	17
21	Narrow-escape time and sorting of active particles in circular domains. Physical Review E, 2020, 102, 042617.	0.8	15
22	Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers. European Physical Journal E, 2011, 34, 98.	0.7	14
23	Effective run-and-tumble dynamics of bacteria baths. Journal of Physics Condensed Matter, 2013, 25, 415102.	0.7	14
24	Run-and-tumble particles in speckle fields. Journal of Physics Condensed Matter, 2014, 26, 375101.	0.7	13
25	Critical active dynamics is captured by a colored-noise driven field theory. Communications Physics, 2022, 5, .	2.0	12
26	Relation between Heterogeneous Frozen Regions in Supercooled Liquids and Non-Debye Spectrum in the Corresponding Glasses. Physical Review Letters, 2019, 123, 155502.	2.9	11
27	Scaling of the entropy production rate in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>ï†</mml:mi><mml:mn>4of active matter. Physical Review E, 2022, 105, 044139.</mml:mn></mml:msup></mml:math 	nn> 0/រ នាml:	:msup>
28	Statistical field theory and effective action method for scalar active matter. Physical Review Research, 2020, 2, .	1.3	10
29	Effective equilibrium picture in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>x</mml:mi><mml:mi>ymodel with exponentially correlated noise. Physical Review E, 2018, 97, 022605.</mml:mi></mml:mrow></mml:math 	i> <b roral:m	row9
30	Softness, anomalous dynamics, and fractal-like energy landscape in model cell tissues. Physical Review E, 2021, 103, 022607.	0.8	9
31	Alignment interactions drive structural transitions in biological tissues. Physical Review E, 2021, 104, 044606.	0.8	7
32	A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic. Scientific Reports, 2021, 11, 24467.	1.6	7
33	Probing the Debye spectrum in glasses using small system sizes. Physical Review Research, 2020, 2, .	1.3	5
34	The overlap parameter across an inverse first-order phase transition in a 3D spin-glass. Philosophical Magazine, 2011, 91, 1966-1976.	0.7	2
35	How non-equilibrium correlations in active matter reveal the topological crossover in glasses. Chaos, Solitons and Fractals, 2021, 153, 111500.	2.5	2
36	Do we understand the solid-like elastic properties of confined liquids?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2021288118.	3.3	1

#	Article	IF	CITATIONS
37	Dynamical arrest with zero complexity: The unusual behavior of the spherical Blume-Emery-Griffiths disordered model. Physical Review E, 2015, 92, 062150.	0.8	Ο
38	Low-frequency excitations and their localization properties in glasses. Condensed Matter Physics, 2019, 22, 43608.	0.3	0