
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088169/publications.pdf Version: 2024-02-01

STEENNO FEDDADI

#	Article	IF	CITATIONS
1	<scp>DMEK</scp> graft: One size does not fit all. Acta Ophthalmologica, 2023, 101, .	0.6	6
2	One threat, different answers: the impact of COVID-19 pandemic on cornea donation and donor selection across Europe. British Journal of Ophthalmology, 2022, 106, 312-318.	2.1	31
3	Impact of COVID-19 on corneal donation and distribution. European Journal of Ophthalmology, 2022, 32, NP269-NP270.	0.7	10
4	Eye bank versus surgeon prepared DMEK tissues: influence on adhesion and re-bubbling rate. British Journal of Ophthalmology, 2022, 106, 177-183.	2.1	27
5	Rebubbling rate in preloaded versus surgeon prepared DSAEK. European Journal of Ophthalmology, 2022, 32, 880-884.	0.7	7
6	In vitro establishment, validation and characterisation of conjunctival epithelium outgrowth using tissue fragments and amniotic membrane. British Journal of Ophthalmology, 2022, 106, 440-444.	2.1	2
7	Approaches for corneal endothelium regenerative medicine. Progress in Retinal and Eye Research, 2022, 87, 100987.	7.3	35
8	Delivering Endothelial Keratoplasty Grafts: Modern Day Transplant Devices. Current Eye Research, 2022, 47, 493-504.	0.7	7
9	Comment on: A novel device to visualize Descemet membrane during donor preparation for Descemet membrane endothelial keratoplasty. Indian Journal of Ophthalmology, 2022, 70, 335.	0.5	1
10	Tracing the SARS-CoV-2 infection on the ocular surface: Overview and preliminary corneoscleral transcriptome sequencing. Experimental Eye Research, 2022, 217, 108975.	1.2	2
11	Eye bank versus surgeon prepared Descemet stripping automated endothelial keratoplasty tissues: Influence on adhesion force in a pilot study. Indian Journal of Ophthalmology, 2022, 70, 523.	0.5	6
12	Incremental Concentrations of Tacrolimus Eye Drops as a Strategy for the Management of Severe Vernal Keratoconjunctivitis. Frontiers in Pharmacology, 2022, 13, 798998.	1.6	1
13	Cryopreservation of human amniotic membrane for ocular surface reconstruction: a comparison between protocols. Cell and Tissue Banking, 2022, 23, 851-861.	0.5	5
14	Factors Affecting the Success Rate of Preloaded Descemet Membrane Endothelial Keratoplasty With Endothelium-Inward Technique: A Multicenter Clinical Study. American Journal of Ophthalmology, 2022, 241, 272-281.	1.7	8
15	Alternatives to endokeratoplasty: an attempt towards reducing global demand ofÂhuman donor corneas. Regenerative Medicine, 2022, , .	0.8	3
16	Presence of SARS-CoV-2 RNA in human corneal tissues donated in Italy during the COVID-19 pandemic. BMJ Open Ophthalmology, 2022, 7, e000990.	0.8	6
17	Analysis and pharmacological modulation of senescence in human epithelial stem cells. Journal of Cellular and Molecular Medicine, 2022, 26, 3977-3994.	1.6	2
18	Synthetic media for preservation of corneal tissues deemed for endothelial keratoplasty and endothelial cell culture. Acta Ophthalmologica, 2021, 99, 314-325.	0.6	5

#	Article	IF	CITATIONS
19	Corneal storage methods: considerations and impact on surgical outcomes. Expert Review of Ophthalmology, 2021, 16, 1-9.	0.3	5
20	A new standardized immunofluorescence method for potency quantification (SMPQ) of human conjunctival cell cultures. Cell and Tissue Banking, 2021, 22, 145-159.	0.5	1
21	Confounding factors influencing the scroll width of Descemet membrane endothelial keratoplasty graft. Indian Journal of Ophthalmology, 2021, 69, 461.	0.5	3
22	Biobanking corneal tissues for emergency procedures during COVID-19 era. Indian Journal of Ophthalmology, 2021, 69, 167.	0.5	4
23	Biomaterials for corneal endothelial cell culture and tissue engineering. Journal of Tissue Engineering, 2021, 12, 204173142199053.	2.3	32
24	Increased Cell Survival of Human Primary Conjunctival Stem Cells in Dimethyl Sulfoxide-Based Cryopreservation Media. Biopreservation and Biobanking, 2021, 19, 67-72.	0.5	4
25	Ultra-thin DSAEK using an innovative artificial anterior chamber pressuriser: a proof-of-concept study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 1871-1877.	1.0	4
26	Expanding the supply of donor grafts. Cornea, 2021, 40, e16-e17.	0.9	2
27	Cost analysis of eye bank versus surgeon prepared endothelial grafts. BMC Health Services Research, 2021, 21, 801.	0.9	8
28	Culture of corneal endothelial cells obtained by descemetorhexis of corneas with Fuchs endothelial corneal dystrophy. Experimental Eye Research, 2021, 211, 108748.	1.2	1
29	Absence of Severe Acute Respiratory Syndrome Coronavirus 2 RNA in Human Corneal Donor Tissues: Implications for Transplantation. Cornea, 2021, 40, e3-e4.	0.9	5
30	Detection of severe acute respiratory syndrome coronavirus 2 in corneas from asymptomatic donors. Acta Ophthalmologica, 2021, 99, e1245-e1246.	0.6	7
31	Gender matching did not affect 2-year rejection or failure rates following DSAEK for Fuchs endothelial corneal dystrophy. American Journal of Ophthalmology, 2021, , .	1.7	10
32	Human corneal endothelial cells from older donors can be cultured and passaged on cellâ€derived extracellular matrix. Acta Ophthalmologica, 2021, 99, e512-e522.	0.6	11
33	Preloaded Descemet Membrane Endothelial Keratoplasty Grafts With Endothelium Outward: A Cross-Country Validation Study of the DMEK Rapid Device. Cornea, 2021, 40, 484-490.	0.9	12
34	Eye Bank Management of Irregular Descemet Stripping Automated Endothelial Keratoplasty Lenticules. Cornea, 2021, 40, 786-789.	0.9	0
35	Long-term preservation of human donor corneal tissues in organ culture. Cell and Tissue Banking, 2021, , 1.	0.5	1
36	Extracellular Vesicles Derived From Human Corneal Endothelial Cells Inhibit Proliferation of Human Corneal Endothelial Cells. Frontiers in Medicine, 2021, 8, 753555.	1.2	1

#	Article	IF	CITATIONS
37	Genetic Modification of Limbal Stem Cells to Decrease Allogeneic Immune Responses. Frontiers in Immunology, 2021, 12, 747357.	2.2	3
38	Evaluating risk, safety and efficacy of novel reproductive techniques and therapies through the EuroGTP II risk assessment tool. Human Reproduction, 2020, 35, 1821-1838.	0.4	6
39	The Influence of Speed During Stripping in Descemet Membrane Endothelial Keratoplasty Tissue Preparation. Cornea, 2020, 39, 1086-1090.	0.9	13
40	The "Yogurt―Technique for Descemet Membrane Endothelial Keratoplasty Graft Preparation: A Novel Quick and Safe Method for Both Inexperienced and Senior Surgeons. Cornea, 2020, 39, 1190-1195.	0.9	12
41	Eye Banking: One Cornea for Multiple Recipients. Cornea, 2020, 39, 1599-1603.	0.9	22
42	Clinical outcomes of pre-loaded ultra-thin DSAEK and pre-loaded DMEK. BMJ Open Ophthalmology, 2020, 5, e000546.	0.8	30
43	Fate of endothelial cells after intrastromal implantation of Descemet's membrane-endothelial cell tissue. Cell and Tissue Banking, 2020, 21, 535-545.	0.5	0
44	A Conservative Surgical Approach to the Treatment of Optic Disc Pit Maculopathy: Four Case Reports. Case Reports in Ophthalmology, 2020, 11, 196-204.	0.3	2
45	Shotgun sequencing to determine corneal infection. American Journal of Ophthalmology Case Reports, 2020, 19, 100737.	0.4	8
46	Banking of corneal stromal lenticules: a risk-analysis assessment with the EuroGTP II interactive tool. Cell and Tissue Banking, 2020, 21, 189-204.	0.5	6
47	Bioinspired Precision Engineering of Threeâ€Dimensional Epithelial Stem Cell Microniches. Advanced Biology, 2020, 4, e2000016.	3.0	10
48	Increasing Donor Endothelial Cell Pool by Culturing Cells from Discarded Pieces of Human Donor Corneas for Regenerative Treatments. Journal of Ophthalmology, 2019, 2019, 1-8.	0.6	12
49	Metagenomics in ophthalmology: Hypothesis or real prospective?. Biotechnology Reports (Amsterdam,) Tj ETQq1	1_0.78431 2.1	14 rgBT /Cve
50	Cross-Country Transportation Efficacy and Clinical Outcomes of Preloaded Large-Diameter Ultra-Thin Descemet Stripping Automated Endothelial Keratoplasty Grafts. Cornea, 2019, 38, 30-34.	0.9	20
51	Passaging capability of human corneal endothelial cells derived from old donors with and without accelerating cell attachment. Experimental Eye Research, 2019, 189, 107814.	1.2	23
52	Metagenomics in ophthalmology: current findings and future prospectives. BMJ Open Ophthalmology, 2019, 4, e000248.	0.8	50
53	Next-generation sequencing for the detection of microorganisms present in human donor corneal preservation medium. BMJ Open Ophthalmology, 2019, 4, e000246.	0.8	18
54	Blocking connexin 43 accelerates corneal healing and improves tissue remodeling during the healing of diabetic rat corneas: A histological and immunohistochemical study. European Journal of Inflammation, 2019, 17, 205873921984338.	0.2	0

#	Article	IF	CITATIONS
55	New Frontiers of Corneal Gene Therapy. Human Gene Therapy, 2019, 30, 923-945.	1.4	18
56	Optimized Protocol for Regeneration of the Conjunctival Epithelium Using the Cell Suspension Technique. Cornea, 2019, 38, 469-479.	0.9	18
57	Culturing Discarded Peripheral Human Corneal Endothelial Cells From the Tissues Deemed for Preloaded DMEK Transplants. Cornea, 2019, 38, 1175-1181.	0.9	20
58	Human Corneal Endothelial Cell Assessment From Tissues Preserved in Serum-Based and Synthetic Storage Media. Cornea, 2019, 38, 1438-1442.	0.9	3
59	Biobanking of Dehydrated Human Donor Corneal Stroma to Increase the Supply of Anterior Lamellar Grafts. Cornea, 2019, 38, 480-484.	0.9	15
60	Identification and characterization of dendritic cell subtypes in preserved and cultured cadaveric human corneolimbal tissue on amniotic membrane. Acta Ophthalmologica, 2019, 97, e184-e193.	0.6	5
61	Effects of corneal preservation conditions on human corneal endothelial cell culture. Experimental Eye Research, 2019, 179, 93-101.	1.2	28
62	Descemet Membrane Endothelial Keratoplasty Learning Curve for Graft Preparation in an Eye Bank Using 645 Donor Corneas. Cornea, 2018, 37, 767-771.	0.9	33
63	A comparative study on different Descemet membrane endothelial keratoplasty graft preparation techniques. Acta Ophthalmologica, 2018, 96, e718-e726.	0.6	41
64	Recombinant human serum albumin for corneal preservation. Acta Ophthalmologica, 2018, 96, e79-e86.	0.6	7
65	Comparison of preservation and transportation protocols for preloaded Descemet membrane endothelial keratoplasty. British Journal of Ophthalmology, 2018, 102, 549-555.	2.1	58
66	Graft detachment and rebubbling rate in Descemet membrane endothelial keratoplasty. Survey of Ophthalmology, 2018, 63, 245-250.	1.7	62
67	Simple limbal epithelial transplantation: a review on current approach and future directions. Survey of Ophthalmology, 2018, 63, 869-874.	1.7	18
68	Clinical Outcomes of Preloaded Descemet Membrane Endothelial Keratoplasty Grafts With Endothelium Tri-Folded Inwards. American Journal of Ophthalmology, 2018, 193, 106-113.	1.7	52
69	Fish Scale-Derived Scaffolds for Culturing Human Corneal Endothelial Cells. Stem Cells International, 2018, 2018, 1-11.	1.2	23
70	Reply. Cornea, 2018, 37, e27-e28.	0.9	0
71	Safety outcomes and long-term effectiveness of ex vivo autologous cultured limbal epithelial transplantation for limbal stem cell deficiency. British Journal of Ophthalmology, 2017, 101, 640-649.	2.1	39
72	Ocular surface reconstruction in limbal stem cell deficiency: current treatment options and perspectives. Expert Review of Ophthalmology, 2017, 12, 43-56.	0.3	0

#	Article	IF	CITATIONS
73	Two-photon optical microscopy imaging of endothelial keratoplasty grafts. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 575-582.	1.0	7
74	Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 21-27.	1.5	10
75	Human Corneal Endothelial Cell Cultivation From Old Donor Corneas With Forced Attachment. Scientific Reports, 2017, 7, 142.	1.6	31
76	3D Microfabricated Scaffolds and Microfluidic Devices for Ocular Surface Replacement: a Review. Stem Cell Reviews and Reports, 2017, 13, 430-441.	5.6	14
77	Standardizing Descemet Membrane Endothelial Keratoplasty Graft Preparation Method in the Eye Bank—Experience of 527 Descemet Membrane Endothelial Keratoplasty Tissues. Cornea, 2017, 36, 1458-1466.	0.9	52
78	Avoiding Complications Associated With Preloaded Ultrathin Descemet Stripping Automated Endothelial Keratoplasty. Cornea, 2017, 36, e12-e13.	0.9	2
79	Refractive outcomes of penetrating keratoplasty and deep anterior lamellar keratoplasty in fellow eyes for keratoconus. International Ophthalmology, 2017, 37, 911-919.	0.6	7
80	Endotheliumâ€in versus endotheliumâ€out for Descemet membrane endothelial keratoplasty graft preparation and implantation. Acta Ophthalmologica, 2017, 95, 194-198.	0.6	49
81	Role of Dextran in Maintaining Adhesive and Stiffness Properties of Prestripped DMEK Lenticules. European Journal of Ophthalmology, 2017, 27, 270-277.	0.7	6
82	Towards xeno-free cultures of human limbal stem cells for ocular surface reconstruction. Cell and Tissue Banking, 2017, 18, 461-474.	0.5	10
83	Transplantation Failure Due to Inadvertent Reversal of Human Donor Corneas. European Journal of Ophthalmology, 2016, 26, e21-e23.	0.7	0
84	Preservation of Preloaded DMEK Lenticules in Dextran and Non-Dextran-Based Organ Culture Medium. Journal of Ophthalmology, 2016, 2016, 1-7.	0.6	16
85	Correction of Mutant p63 in EEC Syndrome Using siRNA Mediated Allele-Specific Silencing Restores Defective Stem Cell Function. Stem Cells, 2016, 34, 1588-1600.	1.4	17
86	Polarization of human donor corneas. Cell and Tissue Banking, 2016, 17, 233-239.	0.5	0
87	Preloaded Tissues for Descemet Membrane Endothelial Keratoplasty. American Journal of Ophthalmology, 2016, 166, 120-125.	1.7	69
88	Personalized Stem Cell Therapy to Correct Corneal Defects Due to a Unique Homozygous-Heterozygous Mosaicism of Ectrodactyly-Ectodermal Dysplasia-Clefting Syndrome. Stem Cells Translational Medicine, 2016, 5, 1098-1105.	1.6	10
89	Concise Review: An Update on the Culture of Human Corneal Endothelial Cells for Transplantation. Stem Cells Translational Medicine, 2016, 5, 258-264.	1.6	44
90	Corneal Epithelial Stem Cells Repopulate the Donor Area within 1 Year from Limbus Removal for Limbal Autograft. Ophthalmology, 2016, 123, 2481-2488.	2.5	22

#	Article	IF	CITATIONS
91	Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization. British Journal of Pharmacology, 2016, 173, 2880-2893.	2.7	41
92	Preservation of Ocular Epithelial Limbal Stem Cells: The New Frontier in Regenerative Medicine. Advances in Experimental Medicine and Biology, 2016, 951, 179-189.	0.8	6
93	Development of a new superficial punch for Descemet's Membrane Endothelial Keratoplasty donor tissue preparation. British Journal of Ophthalmology, 2016, 100, 443-445.	2.1	2
94	An atlas of gene expression and gene co-regulation in the human retina. Nucleic Acids Research, 2016, 44, 5773-5784.	6.5	65
95	High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Research, 2016, 44, 1525-1540.	6.5	98
96	Effect of Cryopreserved Amniotic Membrane Orientation on the Expression of Limbal Mesenchymal and Epithelial Stem Cell Markers in Prolonged Limbal Explant Cultures. PLoS ONE, 2016, 11, e0164408.	1.1	8
97	Developments in Corneal Banking. , 2016, , 23-33.		0
98	The advances of corneal preparation – what is to come?. Expert Review of Ophthalmology, 2015, 10, 321-324.	0.3	0
99	Bubble technique for <scp>D</scp> escemet membrane endothelial keratoplasty tissue preparation in an eye bank: air or liquid?. Acta Ophthalmologica, 2015, 93, e129-34.	0.6	27
100	Synthetic versus Serum-Based Medium for Corneal Preservation in Organ Culture: A Comparative Study between 2 Different Media. European Journal of Ophthalmology, 2015, 25, 96-100.	0.7	10
101	Evaluation of Intrastromal Riboflavin Concentration in Human Corneas after Three Corneal Cross-Linking Imbibition Procedures: A Pilot Study. Journal of Ophthalmology, 2015, 2015, 1-5.	0.6	21
102	Biobanking of Human Retinas: The Next Big Leap for Eye Banks?. Stem Cells Translational Medicine, 2015, 4, 868-872.	1.6	2
103	Preloaded donor corneal lenticules in a new validated 3D printed smart storage glide for Descemet stripping automated endothelial keratoplasty. British Journal of Ophthalmology, 2015, 99, 1388-1395.	2.1	35
104	A superfusion apparatus for ex vivo human eye irritation investigations. Toxicology in Vitro, 2015, 29, 1619-1627.	1.1	7
105	Gene transfer of integration defective anti-HSV-1 meganuclease to human corneas ex vivo. Gene Therapy, 2014, 21, 272-281.	2.3	17
106	A Validated Biorepository of Retina and Choroid Tissues for Gene Expression Studies. Biopreservation and Biobanking, 2014, 12, 255-258.	0.5	3
107	DMEK lenticule preparation from donor corneas using a novel â€~SubHyS' technique followed by anterior corneal dissection. British Journal of Ophthalmology, 2014, 98, 1120-1125.	2.1	23
108	Descemet Membrane Endothelial Keratoplasty Tissue Preparation From Donor Corneas Using a Standardized Submerged Hydro-separation Method. American Journal of Ophthalmology, 2014, 158, 277-285.e1.	1.7	53

#	Article	IF	CITATIONS
109	A portable device for measuring donor corneal transparency in eye banks. Cell and Tissue Banking, 2014, 15, 7-13.	0.5	19
110	A quantitative method to evaluate the donor corneal tissue quality used in a comparative study between two hypothermic preservation media. Cell and Tissue Banking, 2014, 15, 543-554.	0.5	19
111	Human RNA Integrity After Postmortem Retinal Tissue Recovery. Ophthalmic Genetics, 2013, 34, 27-31.	0.5	8
112	Effect of postmortem interval on the Graft Endothelium During Preservation and After Transplantation for Keratoconus. Cornea, 2013, 32, 842-846.	0.9	12
113	Laser Scanning Confocal Microscopy: Application in Manufacturing and Research of Corneal Stem Cells. , 2013, , .		2
114	Posterior Lamellar Graft Preparation: A Prospective Review from an Eye Bank on Current and Future Aspects. Journal of Ophthalmology, 2013, 2013, 1-7.	0.6	30
115	Targeting corneal disorders using gene therapy. Expert Review of Ophthalmology, 2012, 7, 351-362.	0.3	1
116	A Simplified Technique for In situ Excision of Cornea and Evisceration of Retinal Tissue from Human Ocular Globe. Journal of Visualized Experiments, 2012, , e3765.	0.2	6
117	Development of an Allele-Specific Real-Time PCR Assay for Discrimination and Quantification of p63 R279H Mutation in EEC Syndrome. Journal of Molecular Diagnostics, 2012, 14, 38-45.	1.2	8
118	Limbal Stem Cell Deficiency and Ocular Phenotype in Ectrodactyly-Ectodermal Dysplasia-Clefting Syndrome Caused by p63 Mutations. Ophthalmology, 2012, 119, 74-83.	2.5	94
119	Targeting Herpetic Keratitis by Gene Therapy. Journal of Ophthalmology, 2012, 2012, 1-14.	0.6	17
120	A novel de novo missense mutation in <i>TP63</i> underlying germline mosaicism in AEC syndrome: Implications for recurrence risk and prenatal diagnosis. American Journal of Medical Genetics, Part A, 2012, 158A, 1957-1961.	0.7	19
121	Longâ€ŧerm effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clinical and Experimental Ophthalmology, 2012, 40, 255-267.	1.3	42
122	Retinitis Pigmentosa: Genes and Disease Mechanisms. Current Genomics, 2011, 12, 238-249.	0.7	507
123	Diagnosis and management of ophthalmological features in patients with mucopolysaccharidosis. British Journal of Ophthalmology, 2011, 95, 613-619.	2.1	57
124	Correspondence. Retina, 2010, 30, 1555.	1.0	2
125	Ocular manifestations in patients with mucopolysaccharidosis: what do we know and how can we treat?. Clinical and Experimental Ophthalmology, 2010, 38, 1-1.	1.3	1
126	Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function – a review. Clinical and Experimental Ophthalmology, 2010, 38, 2-11.	1.3	127

#	Article	IF	CITATIONS
127	Evaluation of ocular surface disorders: a new diagnostic tool based on impression cytology and confocal laser scanning microscopy. British Journal of Ophthalmology, 2010, 94, 926-932.	2.1	54
128	A 10-year large-scale cystic fibrosis carrier screening in the Italian population. Journal of Cystic Fibrosis, 2010, 9, 29-35.	0.3	23
129	Localization and expression of CHST6 and keratan sulfate proteoglycans in the human cornea. Experimental Eye Research, 2010, 91, 293-299.	1.2	22
130	Techniques for Culture and Assessment of Limbal stem Cell Grafts. Ocular Surface, 2010, 8, 146-153.	2.2	74
131	Advances in corneal surgery and cell therapy: challenges and perspectives for eye banks. Expert Review of Ophthalmology, 2009, 4, 317-329.	0.3	6
132	Two red eyes and one asymptomatic donor. Lancet, The, 2009, 374, 1792.	6.3	1
133	Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Molecular Vision, 2009, 15, 2084-93.	1.1	21
134	Correction of Laminin-5 Deficiency in Human Epidermal Stem Cells by Transcriptionally Targeted Lentiviral Vectors. Molecular Therapy, 2008, 16, 1977-1985.	3.7	60
135	Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Therapy, 2007, 14, 768-774.	2.3	57
136	Sendai virus-mediated CFTR gene transfer to the airway epithelium. Gene Therapy, 2007, 14, 1371-1379.	2.3	53
137	Progress and Prospects: Gene Therapy Clinical Trials (Part 2). Gene Therapy, 2007, 14, 1555-1563.	2.3	77
138	Gene therapy in combination with tissue engineering to treat epidermolysis bullosa. Expert Opinion on Biological Therapy, 2006, 6, 367-378.	1.4	31
139	Towards a Gene Therapy Clinical Trial for Epidermolysis Bullosa. Reviews on Recent Clinical Trials, 2006, 1, 155-162.	0.4	11
140	Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nature Medicine, 2006, 12, 1397-1402.	15.2	593
141	Effect of tolerance induction to immunodominant T-cell epitopes of Sendai virus on gene expression following repeat administration to lung. Gene Therapy, 2006, 13, 449-456.	2.3	19
142	Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Therapy, 2006, 13, 1545-1552.	2.3	87
143	Q-FIHC: Quantification of fluorescence immunohistochemistry to analysep63 isoforms and cell cycle phases in human limbal stem cells. Microscopy Research and Technique, 2006, 69, 983-991.	1.2	56
144	Expression ofVSX1in Human Corneal Keratocytes during Differentiation into Myofibroblasts in Response to Wound Healing. , 2006, 47, 5243.		53

#	Article	IF	CITATIONS
145	Separation of keratan-sulfate-derived disaccharides by high-performance liquid chromatography and postcolumn derivatization with 2-cyanoacetamide and fluorimetric detection. Analytical Biochemistry, 2005, 342, 200-205.	1.1	5
146	Gene therapy approaches for epidermolysis bullosa. Clinics in Dermatology, 2005, 23, 430-436.	0.8	30
147	Effects of intramyocardial pVEGF165 delivery on regional myocardial blood flow: evidence for a spatial â€~delivery–efficacy' mismatch. Gene Therapy, 2004, 11, 1249-1255.	2.3	14
148	A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Therapy, 2004, 11, 1659-1664.	2.3	50
149	Immunological hurdles to lung gene therapy. Clinical and Experimental Immunology, 2003, 132, 1-8.	1.1	61
150	The Nasal Epithelium as a Factory for Systemic Protein Delivery. Molecular Therapy, 2002, 5, 98-103.	3.7	30
151	Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Advanced Drug Delivery Reviews, 2002, 54, 1373-1393.	6.6	147
152	Gene Therapy Progress and Prospects: Cystic fibrosis. Gene Therapy, 2002, 9, 1344-1350.	2.3	70
153	Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Therapy, 2001, 8, 1380-1386.	2.3	109
154	Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nature Biotechnology, 2000, 18, 970-973.	9.4	231
155	Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1447, 219-225.	2.4	94