Motomi Osato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9087970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trib1 promotes the development of acute myeloid leukemia in a Ts1Cje mouse model of Down syndrome. Leukemia, 2022, 36, 558-561.	3.3	1
2	A Runx1-enhancer Element eR1 Identified Lineage Restricted Mammary Luminal Stem Cells. Stem Cells, 2022, 40, 112-122.	1.4	6
3	A Point Mutation R122C in RUNX3 Promotes the Expansion of Isthmus Stem Cells and Inhibits Their Differentiation in the Stomach. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1317-1345.	2.3	7
4	The acidic domain of Hmga2 and the domain's linker region are critical for driving self-renewal of hematopoietic stem cell. International Journal of Hematology, 2022, 115, 553-562.	0.7	3
5	Leukopenia, macrocytosis, and thrombocytopenia occur in young adults with Down syndrome. Gene, 2022, 835, 146663.	1.0	1
6	ZNF143 mediates CTCF-bound promoter–enhancer loops required for murine hematopoietic stem and progenitor cell function. Nature Communications, 2021, 12, 43.	5.8	45
7	Super-enhancers for RUNX3 are required for cell proliferation in EBV-infected B cell lines. Gene, 2021, 774, 145421.	1.0	9
8	RUNX1-ETO (RUNX1-RUNX1T1) induces myeloid leukemia in mice in an age-dependent manner. Leukemia, 2021, 35, 2983-2988.	3.3	6
9	Tocilizumab Induces IL-10-Mediated Immune Tolerance in Invasive Candidiasis. Journal of Fungi (Basel,) Tj ETQq1	9.78431 1.5	4ggBT /Ov€
10	Systematic Review of Normal Subjects Harbouring <i>BCR-ABL1</i> Fusion Gene. Acta Haematologica, 2020, 143, 96-111.	0.7	11
11	ASLAN003, a potent dihydroorotate dehydrogenase inhibitor for differentiation of acute myeloid leukemia. Haematologica, 2020, 105, 2286-2297.	1.7	43
12	Low prevalence of the BCR–ABL1 fusion gene in a normal population in southern Sarawak. International Journal of Hematology, 2020, 111, 217-224.	0.7	1
13	A two-pronged anti-leukemic agent based on a hyaluronic acid–green tea catechin conjugate for inducing targeted cell death and terminal differentiation. Biomaterials Science, 2020, 8, 497-505.	2.6	12
14	Overexpression of RUNX3 Represses RUNX1 to Drive Transformation of Myelodysplastic Syndrome. Cancer Research, 2020, 80, 2523-2536.	0.4	13
15	Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in familial leukemia. Blood, 2020, 136, 1919-1932.	0.6	20
16	Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance. Blood, 2020, 136, 1735-1747.	0.6	33
17	EVI1 triggers metabolic reprogramming associated with leukemogenesis and increases sensitivity to L-asparaginase. Haematologica, 2020, 105, 2118-2129.	1.7	17
18	The RUNX1 Enhancer Element eR1: A Versatile Marker for Adult Stem Cells. Molecules and Cells, 2020, 43, 121-125.	1.0	1

ΜΟΤΟΜΙ OSATO

#	Article	IF	CITATIONS
19	Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors. Journal of Experimental Medicine, 2019, 216, 1599-1614.	4.2	53
20	<scp>TUBB</scp> 1 dysfunction in inherited thrombocytopenia causes genome instability. British Journal of Haematology, 2019, 185, 888-902.	1.2	14
21	Lineage-specific RUNX2 super-enhancer activates MYC and promotes the development of blastic plasmacytoid dendritic cell neoplasm. Nature Communications, 2019, 10, 1653.	5.8	34
22	Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy. Nature Communications, 2019, 10, 5349.	5.8	37
23	Systematic review of pre-clinical chronic myeloid leukaemia. International Journal of Hematology, 2018, 108, 465-484.	0.7	8
24	Preleukemic and second-hit mutational events in an acute myeloid leukemia patient with a novel germline RUNX1 mutation. Biomarker Research, 2018, 6, 16.	2.8	13
25	ASLAN003, a Novel and Potent Dihydroorotate Dehydrogenase (DHODH) Inhibitor, Induces Differentiation of Acute Myeloid Leukemia. Blood, 2018, 132, 4047-4047.	0.6	3
26	Abstract 5110: Runx knockout in breast luminal stem/progenitor cells induced precancerous lesion via robust expression of ERα. , 2018, , .		0
27	Lineage-Specific RUNX2 Super-Enhancer Activates MYC Via Translocation (6;8) to Promote the Development of Blastic Plasmacytoid Dendritic Cell Neoplasm. Blood, 2018, 132, 761-761.	0.6	4
28	Runx Family Genes in Tissue Stem Cell Dynamics. Advances in Experimental Medicine and Biology, 2017, 962, 117-138.	0.8	6
29	LIN28B Activation by PRL-3 Promotes Leukemogenesis and a Stem Cell–like Transcriptional Program in AML. Molecular Cancer Research, 2017, 15, 294-303.	1.5	29
30	Activation of EVI1 transcription by the LEF1/β-catenin complex with p53-alteration in myeloid blast crisis of chronic myeloid leukemia. Biochemical and Biophysical Research Communications, 2017, 482, 994-1000.	1.0	8
31	InÂVivo Generation of Engraftable Murine Hematopoietic Stem Cells by Gfi1b, c-Fos, and Gata2 Overexpression within Teratoma. Stem Cell Reports, 2017, 9, 1024-1033.	2.3	29
32	lkk2 regulates cytokinesis during vertebrate development. Scientific Reports, 2017, 7, 8094.	1.6	10
33	Identification of Stem Cells in the Epithelium of the Stomach Corpus and Antrum of Mice. Gastroenterology, 2017, 152, 218-231.e14.	0.6	121
34	A DNA Contact Map for the Mouse Runx1 Gene Identifies Novel Haematopoietic Enhancers. Scientific Reports, 2017, 7, 13347.	1.6	9
35	Abstract 919: Identification of stem cells in stomach corpus and antrum. , 2017, , .		0
36	Abstract LB-138: Runx1 enhancer element marks stem cells in multiple organs. , 2017, , .		0

#	Article	IF	CITATIONS
37	Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle, 2016, 15, 3070-3081.	1.3	8
38	Lack of Phenotypical and Morphological Evidences of Endothelial to Hematopoietic Transition in the Murine Embryonic Head during Hematopoietic Stem Cell Emergence. PLoS ONE, 2016, 11, e0156427.	1.1	13
39	A Runx1 Interactome Identifies Novel Hematopoietic Enhancers. Blood, 2016, 128, 726-726.	0.6	0
40	Bimodal Influence of Vitamin D in Host Response to Systemic <i>Candida</i> Infection—Vitamin D Dose Matters. Journal of Infectious Diseases, 2015, 212, 635-644.	1.9	26
41	Hematopoiesis specific loss of Cdk2 and Cdk4 results in increased erythrocyte size and delayed platelet recovery following stress. Haematologica, 2015, 100, 431-438.	1.7	23
42	RNA helicase DP103 and TAK1: a new connection in cancer. Molecular and Cellular Oncology, 2015, 2, e985911.	0.3	5
43	MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature, 2015, 523, 96-100.	13.7	317
44	The artificial loss of Runx1 reduces the expression of quiescence-associated transcription factors in CD4 + T lymphocytes. Molecular Immunology, 2015, 68, 223-233.	1.0	8
45	Hematopoietic stem cell enhancer: a powerful tool in stem cell biology. Histology and Histopathology, 2015, 30, 661-72.	0.5	6
46	Abstract LB-139: Tissue stem cell specific enhancer element identifies two types of stem cells in the corpus epithelium of the stomach. , 2015, , .		0
47	Abstract B30: Regulation of the core pre-mRNA splicing machinery by MYC and PRMT5 is essential to sustain lymphomagenesis. , 2015, , .		0
48	Mice Carrying a Hypomorphic Evi1 Allele Are Embryonic Viable but Exhibit Severe Congenital Heart Defects. PLoS ONE, 2014, 9, e89397.	1.1	20
49	Runx Family Genes in a Cartilaginous Fish, the Elephant Shark (Callorhinchus milii). PLoS ONE, 2014, 9, e93816.	1.1	4
50	Disruption of Runx1 and Runx3 Leads to Bone Marrow Failure and Leukemia Predisposition due to Transcriptional and DNA Repair Defects. Cell Reports, 2014, 8, 767-782.	2.9	80
51	An unsung runt 6e isoform for HSC expansion. Blood, 2014, 123, 3684-3686.	0.6	2
52	RUNX1 point mutations potentially identify a subset of early immature T-cell acute lymphoblastic leukaemia that may originate from differentiated T-cells. Gene, 2014, 545, 111-116.	1.0	9
53	Characterization of the Runx Gene Family in a Jawless Vertebrate, the Japanese Lamprey (Lethenteron) Tj ETQq1 2	l 0.784314 1.1	4 rgBT /Ove
54	Runx3 deficiency results in myeloproliferative disorder in aged mice. Blood, 2013, 122, 562-566.	0.6	25

4

#	Article	IF	CITATIONS
55	Polyalanine Repeat Polymorphism in RUNX2 Is Associated with Site-Specific Fracture in Post-Menopausal Females. PLoS ONE, 2013, 8, e72740.	1.1	9
56	Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. Journal of Clinical Investigation, 2013, 123, 1123-1137.	3.9	29
57	Runx1: no longer just for leukemia. EMBO Journal, 2012, 31, 4098-4099.	3.5	31
58	In situ differentiation of CD8αα Τtells from CD4 T cells in peripheral lymphoid tissues. Scientific Reports, 2012, 2, 642.	1.6	8
59	Glutamine Repeat Variants in Human RUNX2 Associated with Decreased Femoral Neck BMD, Broadband Ultrasound Attenuation and Target Gene Transactivation. PLoS ONE, 2012, 7, e42617.	1.1	15
60	The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood, 2011, 118, 6544-6552.	0.6	71
61	Three-dimensional imaging of whole midgestation murine embryos shows an intravascular localization for all hematopoietic clusters. Blood, 2011, 117, 6132-6134.	0.6	39
62	Runx3 Is Required for Full Activation of Regulatory T Cells To Prevent Colitis-Associated Tumor Formation. Journal of Immunology, 2011, 186, 6515-6520.	0.4	34
63	Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis. Development (Cambridge), 2011, 138, 619-629.	1.2	33
64	Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood, 2010, 115, 1610-1620.	0.6	101
65	A <i>Runx1</i> Intronic Enhancer Marks Hemogenic Endothelial Cells and Hematopoietic Stem Cells Â. Stem Cells, 2010, 28, 1869-1881.	1.4	83
66	Requirement for Runx Proteins in IgA Class Switching Acting Downstream of TGF-β1 and Retinoic Acid Signaling. Journal of Immunology, 2010, 184, 2785-2792.	0.4	71
67	Runx family genes, niche, and stem cell quiescence. Blood Cells, Molecules, and Diseases, 2010, 44, 275-286.	0.6	43
68	RUNX3 Attenuates β-Catenin/T Cell Factors in Intestinal Tumorigenesis. Cancer Cell, 2009, 15, 240.	7.7	1
69	Stem cell exhaustion and leukemogenesis. Journal of Cellular Biochemistry, 2009, 107, 393-399.	1.2	17
70	Retroviral integration sites (RIS) mark cis-regulatory elements. Critical Reviews in Oncology/Hematology, 2009, 71, 1-11.	2.0	1
71	Expression profiling of a hemopoietic cell survival transcriptome implicates osteopontin as a functional prognostic factor in AML. Blood, 2009, 114, 4859-4870.	0.6	52
72	Expression Profiling of a Hemopoietic Cell Survival Transcriptome Identifies a Functional Prognostic Gene Signature in Normal Karyotype AML Blood, 2009, 114, 1618-1618.	0.6	16

#	Article	IF	CITATIONS
73	Genetic evidence of PEBP2Î ² -independent activation of Runx1 in the murine embryo. International Journal of Hematology, 2008, 88, 134-138.	0.7	5
74	Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics, 2008, 9, 363.	1.2	116
75	RUNX3 Attenuates β-Catenin/T Cell Factors in Intestinal Tumorigenesis. Cancer Cell, 2008, 14, 226-237.	7.7	214
76	Runx1 is involved in primitive erythropoiesis in the mouse. Blood, 2008, 111, 4075-4080.	0.6	59
77	Runx1/AML1 is a Guardian of Hematopoietic Stem Cells. Current Cancer Therapy Reviews, 2008, 4, 188-195.	0.2	2
78	The Transcription Factor Runx3 Represses the Neurotrophin Receptor TrkB during Lineage Commitment of Dorsal Root Ganglion Neurons. Journal of Biological Chemistry, 2007, 282, 24175-24184.	1.6	58
79	Concurrent transcriptional deregulation of AML1/RUNX1 and GATA factors by the AML1-TRPS1 chimeric gene in t(8;21)(q24;q22) acute myeloid leukemia. Blood, 2007, 109, 4023-4027.	0.6	15
80	The zebrafish udu gene encodes a novel nuclear factor and is essential for primitive erythroid cell development. Blood, 2007, 110, 99-106.	0.6	34
81	cDNA cloning of Runx family genes from the pufferfish (Fugu rubripes). Gene, 2007, 399, 162-173.	1.0	22
82	Runx1Protects Hematopoietic Stem/Progenitor Cells from Oncogenic Insult. Stem Cells, 2007, 25, 2976-2986.	1.4	74
83	Characterization of GATA-1+ hemangioblastic cells in the mouse embryo. EMBO Journal, 2007, 26, 184-196.	3.5	48
84	The Myeloid Features of BXH2 Leukemias May Result from the Lack of One Copy of the Repetitive Sequence in the Long Terminal Repeat Viral Enhancer. International Journal of Hematology, 2007, 85, 170-172.	0.7	2
85	PRL-3 Initiates Tumor Angiogenesis by Recruiting Endothelial Cells In vitro and In vivo. Cancer Research, 2006, 66, 9625-9635.	0.4	77
86	Identification of cooperative genes for NUP98-HOXA9 in myeloid leukemogenesis using a mouse model. Blood, 2005, 105, 784-793.	0.6	74
87	Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukaemogenesis in BXH2 mice. British Journal of Haematology, 2005, 131, 495-507.	1.2	39
88	Increased dosage of Runx1/AML1 acts as a positive modulator of myeloid leukemogenesis in BXH2 mice. Oncogene, 2005, 24, 4477-4485.	2.6	37
89	Increased Dosage of the RUNX1/AML1 Gene: A Third Mode of RUNX Leukemia?. Critical Reviews in Eukaryotic Gene Expression, 2005, 15, 217-228.	0.4	27
90	Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene, 2004, 23, 4284-4296.	2.6	248

#	Article	IF	CITATIONS
91	Molecular basis for a dominant inactivation of RUNX1/AML1 by the leukemogenic inversion 16 chimera. Blood, 2004, 103, 3200-3207.	0.6	29
92	ATRA Resolves the Differentiation Block in t(15;17) Myeloid Leukemia by Restoring PU.1 Expression Blood, 2004, 104, 389-389.	0.6	9
93	Identification of Cooperating Genetic Alterations in RUNX Leukemia Using the Mouse Model for the Human Familial Leukemia, FPD/AML Blood, 2004, 104, 3383-3383.	0.6	0
94	Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the MO subtype. Leukemia, 2003, 17, 2492-2499.	3.3	59
95	Functional analysis of RUNX2 mutations in cleidocranial dysplasia: novel insights into genotype–phenotype correlations. Blood Cells, Molecules, and Diseases, 2003, 30, 184-193.	0.6	42
96	Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood, 2003, 101, 2074-2074.	0.6	25
97	Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood, 2002, 100, 998-1007.	0.6	216
98	In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood, 2002, 99, 1364-1372.	0.6	348
99	Differential Requirements for Runx Proteins in CD4 Repression and Epigenetic Silencing during T Lymphocyte Development. Cell, 2002, 111, 621-633.	13.5	672
100	Functional Analysis of RUNX2 Mutations in Japanese Patients with Cleidocranial Dysplasia Demonstrates Novel Genotype-Phenotype Correlations. American Journal of Human Genetics, 2002, 71, 724-738.	2.6	142
101	Point Mutations of the RUNX1/AML1 Gene in Sporadic and Familial Myeloid Leukemias. International Journal of Hematology, 2001, 74, 245-251.	0.7	47
102	Requirement ofRunx1/AML1/PEBP2αBfor the generation of haematopoietic cells from endothelial cells. Genes To Cells, 2001, 6, 13-23.	0.5	158
103	Long-term remission in an elderly patient with mantle cell leukemia treated with low-dose cyclophosphamide. , 2000, 63, 35-37.		8
104	Biallelic and Heterozygous Point Mutations in the Runt Domain of theAML1/PEBP2B Gene Associated With Myeloblastic Leukemias. Blood, 1999, 93, 1817-1824.	0.6	377
105	Characterization of T-cell receptor beta chain mRNA expression in IFN-alpha-responsive chronic myelogenous leukaemia patients. British Journal of Haematology, 1999, 105, 173-180.	1.2	5
106	Acute Myelomonoblastic Leukemia Carrying the PEBP2β/MYH11 Fusion Gene. Leukemia and Lymphoma, 1998, 31, 81-91.	0.6	9
107	Myelomonoblastic leukaemia cells carrying the PEBP2β/MYH11 fusion gene are CD34 + , câ€KIT + immature cells. British Journal of Haematology, 1997, 97, 656-658	1.2	24
108	Detection of the PEBP2?/MYH11 fusion transcript in acute myelomonoblastic leukemia (M4Eo) supervening in a patient with adult T-cell leukemia. , 1997, 55, 216-217.		2

#	Article	IF	CITATIONS
109	A Human T-Cell Lymphotropic Virus Type-I Carrier with Chronic Renal Failure, Aplastic Anemia, Myelopathy, Uveitis, Sjoegren's Syndrome and Panniculitis Internal Medicine, 1996, 35, 742-745.	0.3	10