
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/908785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
2	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	6.0	864
3	How much does climate change threaten European forest tree species distributions?. Global Change Biology, 2018, 24, 1150-1163.	4.2	540
4	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371
5	How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 2015, 208, 736-749.	3.5	239
6	Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 2012, 111, 601-614.	1.7	184
7	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	3.3	140
8	Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia, 2012, 170, 11-24.	0.9	93
9	Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biology and Biochemistry, 2016, 92, 184-198.	4.2	91
10	Fungal diversity notes 1387–1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2021, 111, 1-335.	4.7	88
11	Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecology and Management, 2017, 406, 1-11.	1.4	86
12	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
13	Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry, 2015, 123, 313-327.	1.7	77
14	Overstorey tree species regulate colonization by native and exotic plants: a source of positive relationships between understorey diversity and invasibility. Diversity and Distributions, 2008, 14, 666-675.	1.9	76
15	Black locust (<i>Robinia pseudoacacia</i> L.) range contraction and expansion in Europe under changing climate. Global Change Biology, 2021, 27, 1587-1600.	4.2	74
16	Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands. PLoS ONE, 2016, 11, e0148668.	1.1	51
17	Seasonal variability of biomass, total leaf area and specific leaf area of forest understory herbs reflects their life strategies. Forest Ecology and Management, 2016, 374, 71-81.	1.4	51
18	Drivers of invasive tree and shrub natural regeneration in temperate forests. Biological Invasions, 2018, 20, 2363-2379.	1.2	50

#	Article	IF	CITATIONS
19	Season and light affect constitutive defenses of understory shrub species against folivorous insects. Acta Oecologica, 2013, 53, 19-32.	0.5	44
20	Seasonal variation in chemistry, but not morphology, in roots of Quercus robur growing in different soil types. Tree Physiology, 2015, 35, 644-652.	1.4	41
21	Tree species effects on bryophyte guilds on a reclaimed post-mining site. Ecological Engineering, 2018, 110, 117-127.	1.6	40
22	Impact of Invasive Tree Species on Natural Regeneration Species Composition, Diversity, and Density. Forests, 2020, 11, 456.	0.9	40
23	Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. Mycorrhiza, 2006, 16, 73-79.	1.3	39
24	"The rich get richer―concept in riparian woody species – A case study of the Warta River Valley (Poznań, Poland). Urban Forestry and Urban Greening, 2015, 14, 107-114.	2.3	39
25	How do tree stand parameters affect young Scots pine biomass? – Allometric equations and biomass conversion and expansion factors. Forest Ecology and Management, 2018, 409, 74-83.	1.4	37
26	Seedling survival of Prunus serotina Ehrh., Quercus rubra L. and Robinia pseudoacacia L. in temperate forests of Western Poland. Forest Ecology and Management, 2019, 450, 117498.	1.4	34
27	Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecology and Management, 2017, 384, 208-220.	1.4	33
28	Advantages of mixed tree stands in restoration of upper soil layers on postmining sites: A fiveâ€year leaf litter decomposition experiment. Land Degradation and Development, 2019, 30, 3-13.	1.8	32
29	Limited dispersal prevents <i>Quercus rubra</i> invasion in a 14â€species common garden experiment. Diversity and Distributions, 2018, 24, 403-414.	1.9	31
30	Factors influencing the accuracy of ground-based tree-height measurements for major European tree species. Journal of Environmental Management, 2019, 231, 1284-1292.	3.8	31
31	Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands. Forest Ecology and Management, 2018, 409, 541-551.	1.4	29
32	The silent shareholder in deterioration of oak growth: common planting practices affect the long-term response of oaks to periodic drought. Forest Ecology and Management, 2014, 318, 133-141.	1.4	28
33	Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. European Journal of Forest Research, 2019, 138, 673-683.	1.1	28
34	Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps?. Ecological Engineering, 2020, 143, 105685.	1.6	28
35	Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: A review. Dendrobiology, 0, 76, 91-104.	0.6	28
36	Systematic importance of pollen morphological features of selected species from the genus Rosa (Rosaceae). Plant Systematics and Evolution, 2011, 295, 55-72.	0.3	27

#	Article	IF	CITATIONS
37	Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr – A rare arctic-alpine species in the Tatra Mts. Science of the Total Environment, 2018, 618, 1628-1637.	3.9	27
38	Tree- and Stand-Level Biomass Estimation in a Larix decidua Mill. Chronosequence. Forests, 2018, 9, 587.	0.9	27
39	Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. Regional Environmental Change, 2021, 21, 1.	1.4	27
40	Functional traits of acquisitive invasive woody species differ from conservative invasive and native species. NeoBiota, 0, 41, 91-113.	1.0	27
41	Comparison of pollen grain morphological features of selected species of the genus <i>Crataegus</i> (Rosaceae) and their spontaneous hybrids. Botanical Journal of the Linnean Society, 2013, 172, 555-571.	0.8	26
42	Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap. Science of the Total Environment, 2018, 635, 1205-1214.	3.9	26
43	Context-Dependence of Urban Forest Vegetation Invasion Level and Alien Species' Ecological Success. Forests, 2019, 10, 26.	0.9	26
44	Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Science of the Total Environment, 2022, 825, 154053.	3.9	26
45	Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap. Dendrobiology, 0, 72, 139-150.	0.6	25
46	Natural forest remnants as refugia for bryophyte diversity in a transformed mountain river valley landscape. Science of the Total Environment, 2018, 640-641, 954-964.	3.9	25
47	Tree and stand level estimations of Abies alba Mill. aboveground biomass. Annals of Forest Science, 2019, 76, 1.	0.8	25
48	Leaf Traits and Aboveground Biomass Variability of Forest Understory Herbaceous Plant Species. Ecosystems, 2020, 23, 555-569.	1.6	25
49	Propagule pressure, presence of roads, and microsite variability influence dispersal of introduced Quercus rubra in temperate Pinus sylvestris forest. Forest Ecology and Management, 2018, 428, 35-45.	1.4	24
50	Plantation of coniferous trees modifies risk and size of Padus serotina (Ehrh.) Borkh. invasion – Evidence from a Rogów Arboretum case study. Forest Ecology and Management, 2015, 357, 84-94.	1.4	22
51	Ecological lands for conservation of vascular plant diversity in the urban environment. Urban Ecosystems, 2017, 20, 639-650.	1.1	22
52	The utility of ancient forest indicator species in urban environments: A case study from Poznań, Poland. Urban Forestry and Urban Greening, 2017, 27, 76-83.	2.3	22
53	Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa. BMC Plant Biology, 2018, 18, 260.	1.6	21
54	Natural regeneration and recruitment of native Quercus robur and introduced Q. rubra in European oak-pine mixed forests. Forest Ecology and Management, 2019, 449, 117473.	1.4	21

#	Article	IF	CITATIONS
55	Biological Flora of the British Isles: <i>Quercus rubra</i> . Journal of Ecology, 2020, 108, 1199-1225.	1.9	21
56	Seedling regeneration techniques affect root systems and the response of Quercus robur seedlings to water shortages. Forest Ecology and Management, 2021, 479, 118552.	1.4	20
57	Invasive Prunus serotina - a new host for Yponomeuta evonymellus (Lepidoptera: Yponomeutidae)?. European Journal of Entomology, 2014, 111, 227-236.	1.2	19
58	Fine root parameters and mycorrhizal colonization of horse chestnut trees (Aesculus hippocastanum) Tj ETQq0	0 0 ₃ .4 3.4	Overlock 10 T 19
59	Functional diversity, succession, and human-mediated disturbances in raised bog vegetation. Science of the Total Environment, 2016, 562, 648-657.	3.9	19
60	Site Type Effect on Litter Decomposition Rates: A Three-Year Comparison of Decomposition Process between Spoil Heap and Forest Sites. Forests, 2019, 10, 353.	0.9	19
61	Similar Impacts of Alien and Native Tree Species on Understory Light Availability in a Temperate Forest. Forests, 2019, 10, 951.	0.9	19
62	Succession of Mite Assemblages (Acari, Mesostigmata) during Decomposition of Tree Leaves in Forest Stands Growing on Reclaimed Post-Mining Spoil Heap and Adjacent Forest Habitats. Forests, 2018, 9, 718.	0.9	18
63	Regeneration origin affects radial growth patterns preceding oak decline and death – insights from tree-ring δ13C and δ18O. Agricultural and Forest Meteorology, 2019, 278, 107685.	1.9	18
64	Impacts of invasive trees on alpha and beta diversity of temperate forest understories. Biological Invasions, 2021, 23, 235-252.	1.2	18
65	Light and propagule pressure affect invasion intensity of Prunus serotina in a 14-tree species forest common garden experiment. NeoBiota, 0, 46, 1-21.	1.0	18
66	The optimal sample size in pollen morphological studies using the example ofRosa caninaL. (Rosaceae). Palynology, 2015, 39, 56-75.	0.7	17
67	Seasonal Dynamics of Floodplain Forest Understory–Impacts of Degradation, Light Availability and Temperature on Biomass and Species Composition. Forests, 2019, 10, 22.	0.9	17
68	Short life–fast death: decomposition rates of woody plants leaf- and herb-litter. Annals of Forest Science, 2021, 78, 1.	0.8	17
69	Patterns of plant invasions at small spatial scale correspond with that at the whole country scale. Urban Ecosystems, 2016, 19, 983-998.	1.1	16
70	Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests. Annals of Forest Science, 2018, 75, 1.	0.8	16
71	Low impact of disturbance on ecological success of invasive tree and shrub species in temperate forests. Plant Ecology, 2018, 219, 1369-1380.	0.7	15
72	Root trait variation in African savannas. Plant and Soil, 2019, 441, 555-565.	1.8	15

#	Article	IF	CITATIONS
73	Mite Communities (Acari, Mesostigmata) in the Initially Decomposed â€~Litter Islands' of 11 Tree Species in Scots Pine (Pinus sylvestris L.) Forest. Forests, 2019, 10, 403.	0.9	15
74	Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L Forest Ecology and Management, 2020, 474, 118329.	1.4	15
75	Potential distribution of an epiphytic bryophyte depends on climate and forest continuity. Global and Planetary Change, 2020, 193, 103270.	1.6	15
76	Effects of land use change and Quercus rubra introduction on Vaccinium myrtillus performance in Pinus sylvestris forests. Forest Ecology and Management, 2019, 440, 1-11.	1.4	14
77	Morphological variability of Carex spicata Huds. utricles among plant communities. Flora: Morphology, Distribution, Functional Ecology of Plants, 2008, 203, 386-395.	0.6	13
78	Above- and below-ground biomass partitioning and fine root morphology in juvenile Sitka spruce clones in monoclonal and polyclonal mixtures. Forest Ecology and Management, 2016, 373, 17-25.	1.4	13
79	Does litter decomposition affect mite communities (Acari, Mesostigmata)? A five-year litterbag experiment with 14 tree species in mixed forest stands growing on a post-industrial area. Geoderma, 2021, 391, 114963.	2.3	13
80	Response of soil mites (Acari, Mesostigmata) to long-term Norway spruce plantation along a mountain stream. Experimental and Applied Acarology, 2018, 76, 269-286.	0.7	12
81	Biodiversity of ectomycorrhizal fungi in surface mine spoil restoration stands in Poland – first time recorded, rare, and red-listed species. Acta Mycologica, 2017, 51, .	0.3	12
82	Seed morphology and endosperm structure of selected species of Primulaceae, Myrsinaceae, and Theophrastaceae and their systematic importance. Plant Systematics and Evolution, 2011, 291, 159-172.	0.3	11
83	Use of remote sensing to track postindustrial vegetation development. Land Degradation and Development, 2021, 32, 1426-1439.	1.8	11
84	Pollen morphology of selected Central European species from subgenera Vignea and Carex (Carex,) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf :
85	Morphological studies of pollen grains of the Polish endemic species of the genus Rubus (Rosaceae). Biologia (Poland), 2012, 67, 87-96.	0.8	10
86	Functional response of Quercus robur L. to taproot pruning: a 5-year case study. Annals of Forest Science, 2018, 75, 1.	0.8	10
87	Slope exposure and forest stand type as crucial factors determining the decomposition rate of herbaceous litter on a reclaimed spoil heap. Catena, 2019, 175, 219-227.	2.2	10
88	River regulation drives shifts in urban riparian vegetation over three decades. Urban Forestry and Urban Greening, 2020, 47, 126524.	2.3	10
89	Seasonal dynamics of shoot biomass of dominant clonal herb species in an oak–hornbeam forest herb layer. Plant Ecology, 2020, 221, 1133-1142.	0.7	10

⁹⁰On the sunny side of the crown â€" quantification of intra-canopy SLA variation among 179 taxa. Forest
Ecology and Management, 2020, 472, 118254.1.410

#	Article	IF	CITATIONS
91	How do invasive trees impact shrub layer diversity and productivity in temperate forests?. Annals of Forest Science, 2021, 78, 1.	0.8	10
92	Temperature and precipitation affect seasonal changes in mite communities (Acari: Mesostigmata) in decomposing litter of broadleaved and coniferous temperate tree species. Annals of Forest Science, 2022, 79, .	0.8	10
93	Pollen morphology and variability of Sambucus nigra L. – Adoxaceae. Biologia (Poland), 2020, 75, 481-493.	0.8	9
94	Cell wall epitopes in grasses of different novel ecosystem habitats on postâ€industrial sites. Land Degradation and Development, 2021, 32, 1680-1694.	1.8	9
95	The afterlife of herbaceous plant species: A litter decomposition experiment in a temperate oak-hornbeam forest. Forest Ecology and Management, 2022, 507, 120008.	1.4	9
96	Variability of perigynium morphology of Central European members of Carex sect. Phaestoglochin (Cyperaceae) from variable plant communities. Plant Systematics and Evolution, 2009, 278, 87-99.	0.3	8
97	Encroachment of woody species on a drained transitional peat bog in â€~Mszar Bogdaniec' nature reserve (Western Poland). Folia Forestalia Polonica, Series A, 2015, 57, 160-172.	0.1	8
98	Do understorey or overstorey traits drive tree encroachment on a drained raised bog?. Plant Biology, 2017, 19, 571-583.	1.8	8
99	The carbon balance of a Scots pine forest following severe windthrow: Comparison of reforestation techniques. Agricultural and Forest Meteorology, 2018, 260-261, 216-228.	1.9	8
100	Responses of soil mite communities (Acari: Oribatida, Mesostigmata) to elemental composition of mosses and pine needles and long-term air pollution in Scots pine (Pinus sylvestris L.) stands. Science of the Total Environment, 2019, 691, 284-295.	3.9	8
101	Landscape and parental tree availability drive spread of Ailanthus altissima in the urban ecosystem of Poznań, Poland. Urban Forestry and Urban Greening, 2020, 56, 126868.	2.3	8
102	Spatial distribution of Cynips quercusfolii (Hymenoptera: Cynipidae) galls on leaves and within the crowns of oak trees. European Journal of Entomology, 2013, 110, 657-661.	1.2	8
103	Ectomycorrhizal Fungi: A Major Player in Early Succession. , 2017, , 187-229.		7
104	Forest land use discontinuity and northern red oak Quercus rubra introduction change biomass allocation and life strategy of lingonberry Vaccinium vitis-idaea. Forest Ecosystems, 2021, 8, .	1.3	6
105	Seasonal changes in the understorey biomass of an oak-hornbeam forest Galio sylvatici-Carpinetum betuli. Forest Research Papers, 2013, 74, 35-47.	0.2	6
106	Primula veris plants derived from in vitro cultures and from seeds: genetic stability, morphology, and seed characteristics. Turkish Journal of Botany, 2018, 42, 412-422.	0.5	5
107	Tree species have a greater influence on species composition of the herb layer than soil texture on a forested postâ€mining area. Land Degradation and Development, 2021, 32, 2013-2024.	1.8	5
108	Encroachment of Padus serotina (Ehrh.) Borkh.into alder carrs and ash-alder riparian forests. Acta Scientiarum Polonorum Silvarum Colendarum Ratio Et Industria Lignaria, 2015, 14, 103-113.	0.1	5

#	Article	IF	CITATIONS
109	Variation of seed morphology of Trollius europaeus L. and Trollius altissimus Crantz (Ranunculaceae). Acta Societatis Botanicorum Poloniae, 2011, 79, 117-123.	0.8	5
110	Taxonomic significance of achene morphology of selected Rosa taxa (Rosaceae) occurring in Poland. Acta Societatis Botanicorum Poloniae, 2016, 85, .	0.8	5
111	Altered growth with blue rings: comparison of radial growth and wood anatomy between trampled and non-trampled Scots pine roots. Dendrochronologia, 2022, 72, 125922.	1.0	5
112	How different is the forest on post-coal mine heap regarded as novel ecosystem?. Forest Ecology and Management, 2022, 515, 120205.	1.4	5
113	Interaction between invasive and potentially invasive shrub species does not influence relationships between their ecological success and distance from propagule sources. Plant Ecology, 2017, 218, 923-933.	0.7	4
114	Herbaceous Layer Net Primary Production of Oak-Hornbeam Forest: Comparing Six Methods of Assessment Based on the Seasonal Dynamics of Biomass Increments. Ecosystems, 2022, 25, 337-349.	1.6	4
115	Functional ecosystem parameters: soil respiration and diversity of mite (Acari, Mesostigmata) communities after disturbance in the upper Cambrian rocks environment. Land Degradation and Development, 0, , .	1.8	4
116	Consequences of different sample drying temperatures for accuracy of biomass inventories in forest ecosystems. Scientific Reports, 2020, 10, 16009.	1.6	3
117	Predatory mite instars (Acari, Mesostigmata) and decomposing tree leaves in mixed and monoculture stands growing on a spoil heap and surrounding forests. Experimental and Applied Acarology, 2021, 84, 703-731.	0.7	3
118	Loss in macronutrient pools in bilberry and lingonberry in mesic Scots pine forests after Northern red oak introduction. European Journal of Forest Research, 2021, 140, 1499-1514.	1.1	3
119	Forest stand structure and cone crop affect winter habitat use by Eurasian red squirrel (Sciurus) Tj ETQq1 1 0.78	84314 rgB 1.4	T /gverlock 10
120	Impacts of alien tree species on the abundance and diversity of terricolous bryophytes. Folia Geobotanica, 2020, 55, 351-363.	0.4	3
121	Continuum of floristic composition between two plant communities – <i>Carici elongatae-Alnetum</i> and <i>Fraxino-Alnetum</i> . Forest Research Papers, 2017, 78, 285-296.	0.2	3
122	Plant communities of the Czerwona Woda River Valley (StoÅ,owe Mountains National Park). Forest Research Papers, 2018, 79, 181-197.	0.2	3
123	Habitat preferences of royal fern Osmunda regalis L. in the â€~Baszków' nature reserve. Folia Forestalia Polonica, Series A, 2014, 56, 171-178.	0.1	2
124	Variability of the inflorescence morphology of <i>Carex spicata</i> (Cyperaceae) and its implication to taxonomy. Nordic Journal of Botany, 2017, 35, 95-106.	0.2	2
125	Macro- and Micronutrient Contents in Soils of a Chronosequence of Naturally Regenerated Birch Stands on Abandoned Agricultural Lands in Central Poland. Forests, 2021, 12, 956.	0.9	2
126	Natural regeneration in the †̃Czmoń' nature reserve (Wielkopolska Region). Forest Research Papers, 2014, 75, 61-75.	0.2	2

#	Article	IF	CITATIONS
127	Succession of Tree Species on Drained Bogs in †Brzozowe Bagno koÅ,o Czaplinka' Nature Reserve, NW Poland. Polish Journal of Ecology, 2019, 66, 352.	0.2	2
128	Mineral Contents in Aboveground Biomass of Sedges (Carex L., Cyperaceae). Energies, 2021, 14, 8007.	1.6	2
129	Biodiversity of Balcan pine (Pinus peuce Griseb.) experimental stands in the Rogów Arboretum (Poland). Folia Forestalia Polonica, Series A, 2013, 55, .	0.1	1
130	Changes in vegetation of the Mszar Bogdaniec nature reserve. Forest Research Papers, 2016, 77, 104-116.	0.2	1
131	Differences in C and N release from Alliaria petiolata leaves and stems: consequences for nutrient cycling in forest ecosystems. European Journal of Forest Research, 0, , .	1.1	1
132	Population and communityâ€level compositional patterns shape the realized niche of the rare arcticâ€alpine species <i>Carex lachenalii</i> Schkuhr. Nordic Journal of Botany, 2020, 38, .	0.2	0
133	Soil mite communities structure (Acari, Mesostigmata) during litter decomposition of seven tree species in pure Scots pine stands (<i>Pinus sylvestris</i> L.) growing on a reclaimed postâ€industrial area. Land Degradation and Development, 0, , .	1.8	0