
Luis E Arteaga-Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9087724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of rejuvenating oil type on the synthesis and properties of alginate-based polynuclear capsules for asphalt self-healing. Road Materials and Pavement Design, 2023, 24, 1669-1694.	2.0	6
2	Catalytic pyrolysis of used tires on noble-metal-based catalysts to obtain high-value chemicals: Reaction pathways. Catalysis Today, 2022, 394-396, 475-485.	2.2	16
3	Elucidating the Role of Rh/C on the Pathways and Kinetics of Ketoneâ€ŧo‣econdary Amines Reaction. ChemCatChem, 2022, 14, .	1.8	2
4	Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts. Data in Brief, 2022, 40, 107745.	0.5	0
5	Synthesis and Characterisation of Alginate-Based Capsules Containing Waste Cooking Oil for Asphalt Self-Healing. Applied Sciences (Switzerland), 2022, 12, 2739.	1.3	12
6	Comparison of Raw and Torrefied Dichrostachys cinerea as a Fuel for Cogeneration Systems: A Life Cycle Assessment. Waste and Biomass Valorization, 2022, 13, 3653-3669.	1.8	2
7	Carbon Aerogel-Supported Iron for Gasification Gas Cleaning: Tars Decomposition. Catalysts, 2022, 12, 391.	1.6	1
8	Tuning the product distribution during the catalytic pyrolysis of waste tires: The effect of the nature of metals and the reaction temperature. Catalysis Today, 2021, 372, 164-174.	2.2	24
9	Carbothermic reduction of carbon aerogel-supported Fe during the catalytic decomposition of toluene. Catalysis Today, 2021, 372, 82-88.	2.2	4
10	Experimental protocol for the study of One-pot amination of Cyclohexanone-to-secondary amines over Carbon-supported Pd. MethodsX, 2021, 8, 101406.	0.7	2
11	Pyrolytic oil from waste tyres as a promising encapsulated rejuvenator for the extrinsic self-healing of bituminous materials. Road Materials and Pavement Design, 2021, 22, S117-S133.	2.0	23
12	Fast pyrolysis of raw and acid-leached sugarcane residues en route to producing chemicals and fuels: Economic and environmental assessments. Journal of Cleaner Production, 2021, 296, 126601.	4.6	5
13	Thermal Behavior, Reaction Pathways and Kinetic Implications of Using a Ni/SiO2 Catalyst for Waste Tire Pyrolysis. Waste and Biomass Valorization, 2021, 12, 6465-6479.	1.8	13
14	One-pot amination of cyclohexanone-to-secondary amines over carbon-supported Pd: Unraveling the reaction mechanism and kinetics. Chemical Engineering Journal, 2021, 417, 129236.	6.6	9
15	Valorization of Waste Tires via Catalytic Fast Pyrolysis Using Palladium Supported on Natural Halloysite. Industrial & Engineering Chemistry Research, 2021, 60, 18806-18816.	1.8	7
16	Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Management, 2020, 102, 21-29.	3.7	101
17	Coaxial Spinning of All-Cellulose Systems for Enhanced Toughness: Filaments of Oxidized Nanofibrils Sheathed in Cellulose II Regenerated from a Protic Ionic Liquid. Biomacromolecules, 2020, 21, 878-891.	2.6	25
18	Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers. Journal of Cleaner Production, 2020, 249, 119356.	4.6	26

Luis E Arteaga-Pérez

#	Article	IF	CITATIONS
19	Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials. Materials, 2020, 13, 1446.	1.3	29
20	The consequences of surface heterogeneity of cobalt nanoparticles on the kinetics of CO methanation. Catalysis Science and Technology, 2019, 9, 6415-6427.	2.1	6
21	On the environmental and economic issues associated with the forestry residues-to-heat and electricity route in Chile: Sawdust gasification as a case study. Energy, 2019, 170, 763-776.	4.5	12
22	Influence of citric acid leaching on the yield and quality of pyrolytic bio-oils from sugarcane residues. Journal of Analytical and Applied Pyrolysis, 2019, 137, 43-53.	2.6	7
23	Effect of citric acid leaching on the demineralization and thermal degradation behavior of sugarcane trash and bagasse. Biomass and Bioenergy, 2018, 108, 371-380.	2.9	36
24	Carbon Aerogel-Supported Nickel and Iron for Gasification Gas Cleaning. Part I: Ammonia Adsorption. Catalysts, 2018, 8, 347.	1.6	15
25	Catalytic Conversion of Model Tars over Carbon-Supported Ni and Fe. Catalysts, 2018, 8, 119.	1.6	13
26	Py-GC/MS based analysis of the influence of citric acid leaching of sugarcane residues as a pretreatment to fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2018, 134, 465-475.	2.6	16
27	Catalytic upgrading of biomass-derived vapors on carbon aerogel-supported Ni: Effect of temperature, metal cluster size and catalyst-to-biomass ratio. Fuel Processing Technology, 2018, 178, 251-261.	3.7	19
28	Steam torrefaction of Eucalyptus globulus for producing black pellets: A pilot-scale experience. Bioresource Technology, 2017, 238, 194-204.	4.8	38
29	In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts. Energy, 2017, 128, 701-712.	4.5	28
30	Elucidating the role of ammonia-based salts on the preparation of cellulose-derived carbon aerogels. Chemical Engineering Science, 2017, 161, 80-91.	1.9	16
31	Exergoenvironmental analysis of a waste-based Integrated Combined Cycle (WICC) for heat and power production. Journal of Cleaner Production, 2017, 164, 187-197.	4.6	42
32	Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production. Energy, 2016, 114, 239-252.	4.5	37
33	A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: Standalone vs Integrated topologies. Chemical Engineering Journal, 2016, 286, 663-678.	6.6	41
34	Life-Cycle Assessment of coal–biomass based electricity in Chile: Focus on using raw vs torrefied wood. Energy for Sustainable Development, 2015, 29, 81-90.	2.0	51
35	Exergoeconomic evaluation of an ethanol-fueled solid oxide fuel cell power plant. Energy, 2015, 93, 1287-1295.	4.5	16
36	Comprehensive Characterization of Sugarcane Bagasse Ash for Its Use as an Adsorbent. Bioenergy Research, 2015, 8, 1885-1895.	2.2	51

3

Luis E Arteaga-Pérez

#	Article	IF	CITATIONS
37	Torrefaction of Pinus radiata and Eucalyptus globulus: A combined experimental and modeling approach to process synthesis. Energy for Sustainable Development, 2015, 29, 13-23.	2.0	39
38	Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures. Energy, 2015, 93, 1731-1741.	4.5	58
39	Health external costs associated to the integration of solid oxide fuel cell in a sugar–ethanol factory. Applied Energy, 2014, 113, 1283-1292.	5.1	9
40	Thermodynamic predictions of performance of a bagasse integrated gasification combined cycle under quasi-equilibrium conditions. Chemical Engineering Journal, 2014, 258, 402-411.	6.6	21
41	Energy and exergy analysis of a sugar cane bagasse gasifier integrated to a solid oxide fuel cell based on a quasi-equilibrium approach. Chemical Engineering Journal, 2013, 228, 1121-1132.	6.6	51
42	An investigation on the modelling of kinetics of thermal decomposition of hazardous mercury wastes. Journal of Hazardous Materials, 2013, 260, 358-367.	6.5	20
43	Deshalogenation of Sovtol-10 Using a No-Destructive Method: Pilot Plant Design. Procedia Engineering, 2012, 42, 346-357.	1.2	2
44	Vertical Subsurface Wetlands for Wastewater Purification. Procedia Engineering, 2012, 42, 1960-1968.	1.2	14
45	Thermodynamic Analysis of the Hydrogen Production from Ethanol: First and Second Laws Approaches. ISRN Thermodynamics, 2012, 2012, 1-8.	0.6	8
46	Comprehensive Simple Model on Solid Oxide Fuel Cells. ISRN Chemical Engineering, 2012, 2012, 1-6.	1.2	1
47	Integration of Solid Oxide Fuel Cell in a sugar–ethanol factory: analysis of the efficiency and the environmental profile of the products. Journal of Cleaner Production, 2011, 19, 1395-1404.	4.6	21
48	Energy and exergy analysis of an ethanol fueled solid oxide fuel cell power plant. Chemical Engineering Journal, 2010, 162, 1057-1066.	6.6	35
49	An auto-sustainable solid oxide fuel cell system fueled by bio-ethanolProcess simulation and heat exchanger network synthesis. Chemical Engineering Journal, 2009, 150, 242-251.	6.6	28
50	Bioethanol steam reforming for ecological syngas and electricity production using a fuel cell SOFC system. Chemical Engineering Journal, 2008, 136, 256-266.	6.6	49
51	Synthesis and characterisation of biocapsules containing low-cost rejuvenators for asphalt self-healing. RILEM Technical Letters, 0, 6, 1-7.	0.0	3