Juan Manuel Castellano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9087368/publications.pdf Version: 2024-02-01

HIAN MANUEL CASTELLANO

#	Article	IF	CITATIONS
1	Effects of Nutrition on Pubertal Timing at the Neuroendocrine and Cellular Levels. , 2021, , 183-202.		0
2	Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty. Cell Metabolism, 2020, 32, 951-966.e8.	7.2	49
3	Mechanisms for the metabolic control of puberty. Current Opinion in Endocrine and Metabolic Research, 2020, 14, 78-84.	0.6	4
4	Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3. PLoS Biology, 2019, 17, e3000532.	2.6	42
5	Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice. Environmental Health Perspectives, 2019, 127, 107011.	2.8	37
6	Gonadal hormone-dependent vsindependent effects of kisspeptin signaling in the control of body weight and metabolic homeostasis. Metabolism: Clinical and Experimental, 2019, 98, 84-94.	1.5	37
7	Thermoneutrality improves skeletal impairment in adult Prader–Willi syndrome mice. Journal of Endocrinology, 2019, 243, 175-186.	1.2	3
8	Intergenerational Influence of Paternal Obesity on Metabolic and Reproductive Health Parameters of the Offspring: Male-Preferential Impact and Involvement of Kiss1-Mediated Pathways. Endocrinology, 2018, 159, 1005-1018.	1.4	29
9	SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression. Nature Communications, 2018, 9, 4194.	5.8	84
10	Metabolic regulation of female puberty via hypothalamic AMPK–kisspeptin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10758-E10767.	3.3	55
11	Female Puberty Overview. , 2018, , 227-237.		2
12	Development and validation of a method for precise dating of female puberty in laboratory rodents: The puberty ovarian maturation score (Pub-Score). Scientific Reports, 2017, 7, 46381.	1.6	51
13	Animal Modeling of Early Programming and Disruption of Pubertal Maturation. Endocrine Development, 2016, 29, 87-121.	1.3	18
14	Metabolic control of female puberty: potential therapeutic targets. Expert Opinion on Therapeutic Targets, 2016, 20, 1181-1193.	1.5	53
15	Metabolic and Conadotropic Impact of Sequential Obesogenic Insults in the Female: Influence of the Loss of Ovarian Secretion. Endocrinology, 2015, 156, 2984-2998.	1.4	27
16	Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. Nature Communications, 2015, 6, 10195.	5.8	72
17	Gene Networks, Epigenetics and the Control of Female Puberty. Research and Perspectives in Endocrine Interactions, 2015, , 97-119.	0.2	1
18	An Alternative Transcription Start Site Yields Estrogen-Unresponsive <i>Kiss1</i> mRNA Transcripts in the Hypothalamus of Prepubertal Female Rats. Neuroendocrinology, 2014, 99, 94-107.	1.2	9

#	Article	IF	CITATIONS
19	Loss of Ntrk2/Kiss1r Signaling in Oocytes Causes Premature Ovarian Failure. Endocrinology, 2014, 155, 3098-3111.	1.4	65
20	Disparate Changes in Kisspeptin and Neurokinin B Expression in the Arcuate Nucleus After Sex Steroid Manipulation Reveal Differential Regulation of the Two KNDy Peptides in Rats. Endocrinology, 2014, 155, 3945-3955.	1.4	31
21	Loss-of-Function Mutations in <i>PNPLA6</i> Encoding Neuropathy Target Esterase Underlie Pubertal Failure and Neurological Deficits in Gordon Holmes Syndrome. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2067-E2075.	1.8	92
22	Kisspeptin Receptor Haplo-insufficiency Causes Premature Ovarian Failure Despite Preserved Gonadotropin Secretion. Endocrinology, 2014, 155, 3088-3097.	1.4	83
23	Obesity-Induced Hypogonadism in the Male: Premature Reproductive Neuroendocrine Senescence and Contribution of Kiss1-Mediated Mechanisms. Endocrinology, 2014, 155, 1067-1079.	1.4	56
24	Metabolic Programming of Puberty: Sexually Dimorphic Responses to Early Nutritional Challenges. Endocrinology, 2013, 154, 3387-3400.	1.4	83
25	A system biology approach to identify regulatory pathways underlying the neuroendocrine control of female puberty in rats and nonhuman primates. Hormones and Behavior, 2013, 64, 175-186.	1.0	43
26	Epigenetic control of female puberty. Nature Neuroscience, 2013, 16, 281-289.	7.1	258
27	Metabolic Regulation of Kisspeptin. Advances in Experimental Medicine and Biology, 2013, 784, 363-383.	0.8	32
28	Differential modulation of gonadotropin responses to kisspeptin by aminoacidergic, peptidergic, and nitric oxide neurotransmission. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1252-E1263.	1.8	28
29	Role of Neurokinin B in the Control of Female Puberty and Its Modulation by Metabolic Status. Journal of Neuroscience, 2012, 32, 2388-2397.	1.7	150
30	Cellular Distribution, Regulated Expression, and Functional Role of the Anorexigenic Peptide, NUCB2/Nesfatin-1, in the Testis. Endocrinology, 2012, 153, 1959-1971.	1.4	94
31	Transcription of the human EAP1 gene is regulated by upstream components of a puberty-controlling Tumor Suppressor Gene network. Molecular and Cellular Endocrinology, 2012, 351, 184-198.	1.6	24
32	Activation of Microglia in Specific Hypothalamic Nuclei and the Cerebellum of Adult Rats Exposed to Neonatal Overnutrition. Journal of Neuroendocrinology, 2011, 23, 365-370.	1.2	65
33	Early Metabolic Programming of Puberty Onset: Impact of Changes in Postnatal Feeding and Rearing Conditions on the Timing of Puberty and Development of the Hypothalamic Kisspeptin System. Endocrinology, 2011, 152, 3396-3408.	1.4	169
34	Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E202-E210.	1.8	222
35	Kisspeptins: Bridging energy homeostasis and reproduction. Brain Research, 2010, 1364, 129-138.	1.1	152
36	The Anorexigenic Neuropeptide, Nesfatin-1, Is Indispensable for Normal Puberty Onset in the Female Rat. Journal of Neuroscience, 2010, 30, 7783-7792.	1.7	126

#	Article	IF	CITATIONS
37	Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E54-E61.	1.8	54
38	Metabolic control of puberty onset: New players, new mechanisms. Molecular and Cellular Endocrinology, 2010, 324, 87-94.	1.6	158
39	KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E520-E531.	1.8	146
40	Delayed Puberty in Spontaneously Hypertensive Rats Involves a Primary Ovarian Failure Independent of the Hypothalamic KiSS-1/GPR54/GnRH System. Endocrinology, 2009, 150, 2889-2897.	1.4	12
41	Persistent Impairment of Hypothalamic KiSS-1 System after Exposures to Estrogenic Compounds at Critical Periods of Brain Sex Differentiation. Endocrinology, 2009, 150, 2359-2367.	1.4	118
42	Alterations in Hypothalamic KiSS-1 System in Experimental Diabetes: Early Changes and Functional Consequences. Endocrinology, 2009, 150, 784-794.	1.4	72
43	The Mammalian Target of Rapamycin as Novel Central Regulator of Puberty Onset via Modulation of Hypothalamic Kiss1 System. Endocrinology, 2009, 150, 5016-5026.	1.4	194
44	KiSS-1/kisspeptins and the metabolic control of reproduction: Physiologic roles and putative physiopathological implications. Peptides, 2009, 30, 139-145.	1.2	149
45	Kisspeptins and the control of gonadotropin secretion in male and female rodents. Peptides, 2009, 30, 57-66.	1.2	89
46	Kisspeptins and Their Receptor. , 2009, , .		0
47	Desensitization of gonadotropin responses to kisspeptin in the female rat: analyses of LH and FSH secretion at different developmental and metabolic states. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E1088-E1096.	1.8	85
48	Opposite Roles of Estrogen Receptor (ER)-α and ERβ in the Modulation of Luteinizing Hormone Responses to Kisspeptin in the Female Rat: Implications for the Generation of the Preovulatory Surge. Endocrinology, 2008, 149, 1627-1637.	1.4	85
49	Follicle-Stimulating Hormone Responses to Kisspeptin in the Female Rat at the Preovulatory Period: Modulation by Estrogen and Progesterone Receptors. Endocrinology, 2008, 149, 5783-5790.	1.4	38
50	Selective role of neuropeptide Y receptor subtype Y ₂ in the control of gonadotropin secretion in the rat. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1385-E1392.	1.8	22
51	Novel role of the anorexigenic peptide neuromedin U in the control of LH secretion and its regulation by gonadal hormones and photoperiod. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1265-E1273.	1.8	26
52	Direct stimulatory effect of ghrelin on pituitary release of LH through a nitric oxide-dependent mechanism that is modulated by estrogen. Reproduction, 2007, 133, 1223-1232.	1.1	47
53	Neuromedin S as Novel Putative Regulator of Luteinizing Hormone Secretion. Endocrinology, 2007, 148, 813-823.	1.4	42
54	Neuroendocrine factors in the initiation of puberty: The emergent role of kisspeptin. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 11-20.	2.6	87

#	Article	IF	CITATIONS
55	Expression of KiSS-1 in rat oviduct: possible involvement in prevention of ectopic implantation?. Cell and Tissue Research, 2007, 329, 571-579.	1.5	30
56	Expression of KiSS-1 in Rat Ovary: Putative Local Regulator of Ovulation?. Endocrinology, 2006, 147, 4852-4862.	1.4	224
57	Expression of Hypothalamic KiSS-1 System and Rescue of Defective Gonadotropic Responses by Kisspeptin in Streptozotocin-Induced Diabetic Male Rats. Diabetes, 2006, 55, 2602-2610.	0.3	217
58	Novel signals for the integration of energy balance and reproduction. Molecular and Cellular Endocrinology, 2006, 254-255, 127-132.	1.6	285
59	Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Molecular and Cellular Endocrinology, 2006, 257-258, 75-83.	1.6	139
60	Effects of Single or Repeated Intravenous Administration of Kisspeptin upon Dynamic LH Secretion in Conscious Male Rats. Endocrinology, 2006, 147, 2696-2704.	1.4	102
61	Hypothalamic Expression of KiSS-1 System and Gonadotropin-Releasing Effects of Kisspeptin in Different Reproductive States of the Female Rat. Endocrinology, 2006, 147, 2864-2878.	1.4	155
62	Stimulatory effect of PYY-(3–36) on gonadotropin secretion is potentiated in fasted rats. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1162-E1171.	1.8	19
63	Effects of galanin-like peptide on luteinizing hormone secretion in the rat: sexually dimorphic responses and enhanced sensitivity at male puberty. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1281-E1289.	1.8	31
64	Characterization of the Potent Luteinizing Hormone-Releasing Activity of KiSS-1 Peptide, the Natural Ligand of GPR54. Endocrinology, 2005, 146, 156-163.	1.4	412
65	Effects of KiSS-1 Peptide, the Natural Ligand of GPR54, on Follicle-Stimulating Hormone Secretion in the Rat. Endocrinology, 2005, 146, 1689-1697.	1.4	277
66	Pattern of Orexin Expression and Direct Biological Actions of Orexin-A in Rat Testis. Endocrinology, 2005, 146, 5164-5175.	1.4	70
67	Effects of Ghrelin upon Gonadotropin-Releasing Hormone and Gonadotropin Secretion in Adult Female Rats: In vivo and in vitro Studies. Neuroendocrinology, 2005, 82, 245-255.	1.2	187
68	Changes in Hypothalamic KiSS-1 System and Restoration of Pubertal Activation of the Reproductive Axis by Kisspeptin in Undernutrition. Endocrinology, 2005, 146, 3917-3925.	1.4	475
69	Ghrelin Inhibits the Proliferative Activity of Immature Leydig Cells in Vivo and Regulates Stem Cell Factor Messenger Ribonucleic Acid Expression in Rat Testis. Endocrinology, 2004, 145, 4825-4834.	1.4	98
70	Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. Journal of Physiology, 2004, 561, 379-386.	1.3	403
71	Developmental and Hormonally Regulated Messenger Ribonucleic Acid Expression of KiSS-1 and Its Putative Receptor, GPR54, in Rat Hypothalamus and Potent Luteinizing Hormone-Releasing Activity of KiSS-1 Peptide. Endocrinology, 2004, 145, 4565-4574.	1.4	641