Pari Madhiyazhagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9087268/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experimental Parasitology, 2015, 153, 129-138.	1.2	230
2	Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?. Parasitology Research, 2015, 114, 1519-1529.	1.6	203
3	Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitology Research, 2015, 114, 3315-3325.	1.6	184
4	Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicology and Environmental Safety, 2015, 121, 31-38.	6.0	176
5	S argassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitology Research, 2015, 114, 4305-4317.	1.6	130
6	Green Synthesis of Silver Nanoparticles for the Control of Mosquito Vectors of Malaria, Filariasis, and Dengue. Vector-Borne and Zoonotic Diseases, 2012, 12, 262-268.	1.5	115
7	Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environmental Science and Pollution Research, 2016, 23, 7543-7558.	5.3	111
8	Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). Journal of Pest Science, 2016, 89, 249-256.	3.7	111
9	Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitology Research, 2016, 115, 997-1013.	1.6	108
10	Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitology Research, 2015, 114, 3601-3610.	1.6	101
11	Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitology Research, 2015, 114, 391-397.	1.6	100
12	Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?. Environmental Science and Pollution Research, 2015, 22, 20067-20083.	5.3	94
13	Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?. Parasitology Research, 2015, 114, 4087-4097.	1.6	91
14	Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitology Research, 2016, 115, 651-662.	1.6	82
15	Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitology International, 2016, 65, 276-284.	1.3	73
16	In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Research in Veterinary Science, 2016, 106, 14-22.	1.9	71
17	Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitology Research, 2015, 114, 4349-4361.	1.6	63
18	Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitology Research, 2016, 115, 1015-1025.	1.6	58

#	ARTICLE	IF	CITATIONS
19	Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environmental Science and Pollution Research, 2016, 23, 16671-16685.	5.3	56
20	Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus?. Environmental Science and Pollution Research, 2015, 22, 17053-17064.	5.3	53
21	Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitology Research, 2016, 115, 751-759.	1.6	53
22	Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitology Research, 2015, 114, 4645-4654.	1.6	52
23	Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi?. Research in Veterinary Science, 2015, 102, 127-135.	1.9	43
24	Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitology Research, 2016, 115, 1071-1083.	1.6	39
25	One pot synthesis of silver nanocrystals using the seaweed Gracilaria edulis: biophysical characterization and potential against the filariasis vector Culex quinquefasciatus and the midge Chironomus circumdatus. Journal of Applied Phycology, 2017, 29, 649-659.	2.8	26
26	Rapid biosynthesis of silver nanoparticles using <i>Crotalaria verrucosa</i> leaves against the dengue vector <i>Aedes aegypti</i> : what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses. Natural Product Research, 2016, 30, 826-833.	1.8	21
27	Mosquitocidal and water purification properties of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus leaf extracts against the mosquito vectors. Parasitology Research, 2012, 110, 1435-1443.	1.6	20
28	Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera:) Tj ETQq0 (1149-1160.	0 rgBT /Ov 1.6	verlock 10 Tf 5 18
29	Green-synthesised nanoparticles from <i>Melia azedarach</i> seeds and the cyclopoid crustacean <i>Cyclops vernalis</i> : an eco-friendly route to control the malaria vector <i>Anopheles stephensi?</i> . Natural Product Research, 2016, 30, 2077-2084.	1.8	16
30	Neem by-products in the fight against mosquito-borne diseases: Biotoxicity of neem cake fractions towards the rural malaria vector Anopheles culicifacies (Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 2016, 6, 472-476.	1.2	13
31	Laboratory and field efficacy of Pedalium murex and predatory copepod, Mesocyclops longisetus on rural malaria vector, Anopheles culicifacies. Asian Pacific Journal of Tropical Disease, 2013, 3, 111-118.	0.5	10
32	Extraction of mosquitocidals from Ocimum canum leaves for the control of dengue and malarial vectors. Asian Pacific Journal of Tropical Disease, 2014, 4, S549-S555.	0.5	8
33	Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae): a HPTLC fingerprinting approach. Natural Product Research, 2017, 31, 1185-1190.	1.8	8
34	<i>Pedilanthus tithymaloides</i> (Euphorbiaceae) Leaf Extract Phytochemicals: Toxicity to the Filariasis Vector <i>Culex quinquefasciatus</i> (Diptera: Culicidae). Vector-Borne and Zoonotic Diseases, 2010, 10, 817-820.	1.5	6
35	Mosquitocidal and water purification properties of Ocimum sanctum and Phyllanthus emblica. Journal of Entomological and Acarological Research, 2012, 44, 17.	0.7	6
36	Do Nanomosquitocides Impact Predation of Mesocyclops edax Copepods Against Anopheles stephensi Larvae?. Parasitology Research Monographs, 2016, , 173-190.	0.3	2

#	Article	IF	CITATIONS
37	Phytochemical and synergism of plant and Microbial Insecticides to eliminate Earias vittella Gut Epithelial Cells. International Journal of Pharma and Bio Sciences, 2022, 12, .	0.1	0