Peng Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9087114/publications.pdf

Version: 2024-02-01

76 papers	3,017 citations	31 h-index	52 g-index
76	76	76	1737
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4683-4689.	5.6	316
2	Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5723-5727.	5.6	264
3	Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2161-2168.	7.6	249
4	Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling. Scripta Materialia, 2011, 64, 1051-1054.	5.2	98
5	Achieving high property friction stir welded aluminium/copper lap joint at low heat input. Science and Technology of Welding and Joining, 2011, 16, 657-661.	3.1	77
6	High tensile ductility via enhanced strain hardening in ultrafine-grained Cu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 106-110.	5.6	77
7	Effect of Heat Input Conditions on Microstructure and Mechanical Properties of Friction-Stir-Welded Pure Copper. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2010-2021.	2.2	76
8	Inhomogeneous microstructure and mechanical properties of friction stir processed NiAl bronze. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 524, 119-128.	5.6	75
9	Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3091-3103.	2.2	73
10	Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions. Journal of Materials Science and Technology, 2019, 35, 972-981.	10.7	70
11	Microstructural evolution in recrystallized and unrecrystallized Al–Mg–Sc alloys during superplastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 547, 55-63.	5.6	65
12	Enhanced strength and ductility of friction stir processed Cu–Al alloys with abundant twin boundaries. Scripta Materialia, 2013, 68, 751-754.	5.2	62
13	Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling. Journal of Materials Science and Technology, 2017, 33, 1009-1014.	10.7	62
14	Achieving Large-area Bulk Ultrafine Grained Cu via Submerged Multiple-pass Friction Stir Processing. Journal of Materials Science and Technology, 2013, 29, 1111-1115.	10.7	54
15	Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 575, 30-34.	5.6	52
16	Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing. Materials Characterization, 2017, 131, 425-430.	4.4	48
17	Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates. Journal of Materials Science and Technology, 2020, 41, 105-116.	10.7	48
18	Impact toughness of friction stir processed low carbon steel used in shipbuilding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 40-48.	5.6	46

#	Article	IF	CITATIONS
19	Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding. Journal of Materials Science and Technology, 2018, 34, 112-118.	10.7	46
20	Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel. Materials and Design, 2016, 110, 802-810.	7.0	45
21	Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy. Materials Characterization, 2017, 128, 14-22.	4.4	44
22	Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint. Scripta Materialia, 2016, 122, 26-30.	5.2	42
23	Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure. Materials Characterization, 2016, 121, 187-194.	4.4	41
24	Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing. Acta Metallurgica Sinica (English Letters), 2020, 33, 947-956.	2.9	40
25	Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling. Materials & Design, 2014, 56, 848-851.	5.1	39
26	A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates. Materials Characterization, 2018, 145, 20-28.	4.4	39
27	Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment. Journal of Materials Science and Technology, 2020, 50, 103-114.	10.7	38
28	Material flow and void defect formation in friction stir welding of aluminium alloys. Science and Technology of Welding and Joining, 2018, 23, 677-686.	3.1	37
29	Microstructural evolution and mechanical properties of ultrafine grained Al3Ti/Al–5.5Cu composites produced via hot pressing and subsequent friction stir processing. Materials Chemistry and Physics, 2012, 134, 294-301.	4.0	36
30	Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 153-158.	5.6	35
31	Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure. Science China Materials, 2016, 59, 531-537.	6.3	32
32	Achieving ultrafine-grained ferrite structure in friction stir processed weld metal. Materials Letters, 2016, 162, 161-164.	2.6	31
33	Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling. Journal of Materials Science and Technology, 2018, 34, 2183-2188.	10.7	31
34	Effect of Rotation Rate on Microstructures and Mechanical Properties of FSW Mg-Zn-Y-Zr Alloy Joints. Journal of Materials Science and Technology, 2011, 27, 1157-1164.	10.7	29
35	Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior. Materials Science & Diperties, Microstructure and Processing, 2017, 707, 426-434.	5. 6	29
36	Enhanced mechanical properties in friction stir welded low alloy steel joints via structure refining. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 322-329.	5 . 6	28

#	Article	IF	CITATIONS
37	Effect of grain ultra-refinement on corrosion behavior of ultra-high strength high nitrogen stainless steel. Corrosion Science, 2020, 174, 108847.	6.6	27
38	Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing. Journal of Materials Processing Technology, 2021, 288, 116880.	6.3	27
39	Effect of Multiple-Pass Friction Stir Processing Overlapping on Microstructure and Mechanical Properties of As-Cast NiAl Bronze. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2125-2135.	2.2	26
40	Microstructure and Mechanical Properties of X80 Pipeline Steel Joints by Friction Stir Welding Under Various Cooling Conditions. Acta Metallurgica Sinica (English Letters), 2020, 33, 88-102.	2.9	24
41	An approach to enhancement of Mg alloy joint performance by additional pass of friction stir processing. Journal of Materials Processing Technology, 2019, 264, 336-345.	6.3	23
42	Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding. Journal of Materials Science and Technology, 2021, 93, 221-231.	10.7	23
43	Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2673-2683.	2.2	22
44	Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design. Materials Science & Science & Properties, Microstructure and Processing, 2019, 755, 28-36.	5.6	20
45	Improved cyclic softening behavior of ultrafine-grained Cu with high microstructural stability. Scripta Materialia, 2019, 166, 10-14.	5.2	19
46	Microstructure, crystallography, and toughness in nugget zone of friction stir welded high-strength pipeline steel. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139620.	5.6	19
47	Microstructural and Mechanical Evolution of a Low Carbon Steel by Friction Stir Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3869-3879.	2.2	17
48	Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel. Journal of Materials Science and Technology, 2019, 35, 1278-1283.	10.7	17
49	Achieving equal strength joint to parent metal in a friction stir welded ultra-high strength quenching and partitioning steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139979.	5 . 6	17
50	Realising equal strength welding to parent metal in precipitation-hardened Al–Mg–Si alloy via low heat input friction stir welding. Science and Technology of Welding and Joining, 2018, 23, 478-486.	3.1	16
51	Achieving equal fatigue strength to base material in a friction stir welded 5083-H19 aluminium alloy joint. Science and Technology of Welding and Joining, 2020, 25, 81-88.	3.1	16
52	Improving mechanical properties of friction-stir-spot-welded advanced ultra-high-strength steel with additional water cooling. Science and Technology of Welding and Joining, 2020, 25, 336-344.	3.1	16
53	Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel. Journal of Materials Science and Technology, 2022, 102, 213-223.	10.7	16
54	Improved strength with good conductivity in Cu–Cr–Zr alloys: Determinant effect of under-aging treatment before rolling and aging. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143395.	5.6	16

#	Article	IF	Citations
55	Superplastic Behavior of Friction Stir Processed ZK60 Magnesium Alloy. Materials Transactions, 2011, 52, 2278-2281.	1.2	15
56	Effects of heating rates on microstructure and superplastic behavior of friction stir processed 7075 aluminum alloy. Journal of Materials Science, 2015, 50, 1006-1015.	3.7	15
57	Microstructural Evolution and Mechanical Behavior of Friction-Stir-Welded DP1180 Advanced Ultrahigh Strength Steel. Acta Metallurgica Sinica (English Letters), 2020, 33, 58-66.	2.9	15
58	Defect formation, microstructure evolution, and mechanical properties of bobbin tool friction–stir welded 2219-T8 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142414.	5.6	15
59	Superplastic Constitutive Equation Including Percentage of High-Angle Grain Boundaries as a Microstructural Parameter. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 546-559.	2.2	12
60	Achieving superior low temperature and high strain rate superplasticity in submerged friction stir welded Ti-6Al-4V alloy. Science China Materials, 2018, 61, 417-423.	6.3	10
61	High-Speed Friction Stir Welding of SiCp/Al–Mg–Si–Cu Composite. Acta Metallurgica Sinica (English) Tj E1	TQq1 ₉ 1 0.7	784314 rgBT
62	Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint. Journal of Materials Science and Technology, 2022, 119, 1-10.	10.7	10
63	Effect of static annealing on superplastic behavior of a friction stir welded Ti-6Al-4V alloy joint and microstructural evolution during deformation. Journal of Materials Science and Technology, 2022, 130, 112-123.	10.7	10
64	A novel approach to achieve high yield strength high nitrogen stainless steel with superior ductility and corrosion resistance. Materials Letters, 2019, 242, 91-94.	2.6	8
65	High-cycle fatigue and fracture behavior of double-side friction stir welded 6082Al ultra-thick plates. Engineering Fracture Mechanics, 2020, 226, 106887.	4.3	8
66	Realising equal-strength welding with good conductivity in Cu–Cr–Zr alloy via friction stir welding. Science and Technology of Welding and Joining, 2021, 26, 448-454.	3.1	8
67	High strength and ductility achieved in friction stir processed Ni-Co based superalloy with fine grains and nanotwins. Journal of Materials Science and Technology, 2022, 106, 162-172.	10.7	8
68	Welding behavior of an ultrahigh-strength quenching and partitioning steel by fusion and solid-state welding methods. Journal of Materials Research and Technology, 2022, 17, 1289-1301.	5.8	7
69	Low-temperature superplasticity of nugget zone of friction stir welded Al-Mg alloy joint. Materials Science & Science and Processing, 2018, 727, 177-183.	5.6	6
70	Improved high cycle fatigue property of ultrafine grained pure aluminum. Materials Letters, 2020, 277, 128289.	2.6	6
71	Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding. Acta Metallurgica Sinica (English Letters), 2021, 34, 12-24.	2.9	6
72	Microstructure and Corrosion Resistance of Friction Stir Welded High Nitrogen Stainless Steel Joint. Corrosion, 2019, 75, 790-798.	1.1	4

#	Article	lF	CITATION
73	Microstructure and mechanical properties of electron beam welded TiZrNbTa refractory high entropy alloy. Materials Today Communications, 2022, 32, 103847.	1.9	4
74	Effect of Rotation Rate on Microstructure and Mechanical Properties of FrictionÂStirÂProcessed Ni–Fe-Based Superalloy. Acta Metallurgica Sinica (English Letters), 2021, 34, 1407-1420.	2.9	3
75	Microstructure and mechanical properties of friction stir welded X80 pipeline steel joint under additional cooling., 2013,, 445-448.		2
76	Enhanced Mechanical Properties of Al–36Si Composite via Friction Stir Processing and Subsequent Heat Treatment. Materials Transactions, 2018, 59, 1513-1519.	1.2	0