Danielle Malo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salmonella enterica subsp. enterica virulence potential can be linked to higher survival within a dynamic in vitro human gastrointestinal model. Food Microbiology, 2022, 101, 103877.	2.1	5
2	The Salmonella enterica Plasmidome as a Reservoir of Antibiotic Resistance. Microorganisms, 2020, 8, 1016.	1.6	23
3	Combining Whole-Genome Sequencing and Multimodel Phenotyping To Identify Genetic Predictors of <i>Salmonella</i> Virulence. MSphere, 2020, 5, .	1.3	9
4	CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection. Nature Microbiology, 2019, 4, 1516-1531.	5.9	37
5	A Loss-of-Function Mutation in the Integrin Alpha L (<i>Itgal</i>) Gene Contributes to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Collaborative Cross Strain CC042. Infection and Immunity, 2019, 88, .	1.0	19
6	Enterobacteria and host resistance to infection. Mammalian Genome, 2018, 29, 558-576.	1.0	31
7	Identification of new loci involved in the host susceptibility to Salmonella Typhimurium in collaborative cross mice. BMC Genomics, 2018, 19, 303.	1.2	26
8	Complex genetics architecture contributes to Salmonella resistance in AcB60 mice. Mammalian Genome, 2017, 28, 38-46.	1.0	0
9	Iron- and Hepcidin-Independent Downregulation of the Iron Exporter Ferroportin in Macrophages during Salmonella Infection. Frontiers in Immunology, 2017, 8, 498.	2.2	32
10	A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis. Frontiers in Microbiology, 2017, 8, 996.	1.5	42
11	Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nature Immunology, 2016, 17, 65-75.	7.0	305
12	<scp>USP</scp> 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO Journal, 2015, 34, 1612-1629.	3.5	178
13	Cyclosporine A Treatment Inhibits Abcc6-Dependent Cardiac Necrosis and Calcification following Coxsackievirus B3 Infection in Mice. PLoS ONE, 2015, 10, e0138222.	1.1	10
14	Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes, 2014, 5, 887-925.	1.0	19
15	Altered IFN-γ–Mediated Immunity and Transcriptional Expression Patterns in <i>N</i> -Ethyl- <i>N</i> -Nitrosourea–Induced STAT4 Mutants Confer Susceptibility to Acute Typhoid-like Disease. Journal of Immunology, 2014, 192, 259-270.	0.4	17
16	Genetic Dissection of the Ity3 Locus Identifies a Role for Ncf2 Co-Expression Modules and Suggests Selp as a Candidate Gene Underlying the Ity3.2 Locus. Frontiers in Immunology, 2014, 5, 375.	2.2	7
17	Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure. PLoS ONE, 2014, 9, e88009.	1.1	6
18	Functional validation of the genetic architecture of Salmonella Enteritidis persistence in 129S6 mice. Mammalian Genome, 2013, 24, 218-227.	1.0	0

#	Article	IF	CITATIONS
19	R-Spondin 2 signalling mediates susceptibility to fatal infectious diarrhoea. Nature Communications, 2013, 4, 1898.	5.8	65
20	Characterization of Two ENU-Induced Mutations Affecting Mouse Skeletal Morphology. G3: Genes, Genomes, Genetics, 2013, 3, 1753-1758.	0.8	10
21	Suppression of Hepcidin Expression and Iron Overload Mediate Salmonella Susceptibility in Ankyrin 1 ENU-Induced Mutant. PLoS ONE, 2013, 8, e55331.	1.1	16
22	The Cri1 locus is the common genetic cause of susceptibility to <i>Citrobacter rodentium</i> infection in C3H and FVB mouse strains Gut Microbes, 2011, 2, 173-177.	4.3	6
23	<i>N</i> -Ethyl- <i>N</i> -Nitrosourea–Induced Mutation in Ubiquitin-Specific Peptidase 18 Causes Hyperactivation of IFN-1±1² Signaling and Suppresses STAT4-Induced IFN-1³ Production, Resulting in Increased Susceptibility to <i>Salmonella</i> Typhimurium. Journal of Immunology, 2010, 185, 3593-3601.	0.4	36
24	Chemical mutagenesis: a new strategy against the global threat of infectious diseases. Mammalian Genome, 2008, 19, 309-317.	1.0	7
25	<i>Icsbp1</i> /IRF-8 Is Required for Innate and Adaptive Immune Responses against Intracellular Pathogens. Journal of Immunology, 2007, 179, 2467-2476.	0.4	59
26	Molecular Genetic Analysis of Two Loci (<i>lty2</i> and <i>lty3</i>) Involved in the Host Response to Infection With Salmonella Typhimurium Using Congenic Mice and Expression Profiling. Genetics, 2007, 177, 1125-1139.	1.2	14
27	Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. Journal of Experimental Medicine, 2007, 204, 2949-2961.	4.2	31
28	Tlr5 is not primarily associated with susceptibility to Salmonella Typhimurium infection in MOLF/Ei mice. Mammalian Genome, 2006, 17, 385-397.	1.0	6
29	Mapping genetic modulators of amyloid plaque deposition in TgCRND8 transgenic mice. Human Molecular Genetics, 2006, 15, 2313-2323.	1.4	25
30	Influence of Slc11a1 on the Outcome of Salmonella enterica Serovar Enteritidis Infection in Mice Is Associated with Th Polarization. Infection and Immunity, 2006, 74, 2787-2802.	1.0	19
31	Sequencing, Expression, and Functional Analyses Support the Candidacy ofNcf2in Susceptibility toSalmonellaTyphimurium Infection in Wild-Derived Mice. Journal of Immunology, 2006, 176, 6954-6961.	0.4	27
32	A mutation in the lcsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia–like syndrome in BXH-2 mice. Journal of Experimental Medicine, 2005, 201, 881-890.	4.2	93
33	Allelic Variation in TLR4 Is Linked to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Chickens. Infection and Immunity, 2003, 71, 1116-1124.	1.0	215
34	Overexpression of Toll-Like Receptor 4 Amplifies the Host Response to Lipopolysaccharide and Provides a Survival Advantage in Transgenic Mice. Journal of Immunology, 2003, 170, 6141-6150.	0.4	85
35	Genetic Regulation of Host Responses to Salmonella typhimurium. , 2002, , 17-36.		0
36	Host Immune Response to Salmonella enterica Serovar Typhimurium Infection in Mice Derived from Wild Strains. Infection and Immunity, 2002, 70, 1997-2009.	1.0	42

#	Article	IF	CITATIONS
37	Recombinant Congenic Strains Derived from A/J and C57BL/6J: A Tool for Genetic Dissection of Complex Traits. Genomics, 2001, 74, 21-35.	1.3	125
38	Cloning and Characterization of the Murine Toll-like Receptor 5 (Tlr5) Gene: Sequence and mRNA Expression Studies in Salmonella-Susceptible MOLF/Ei Mice. Genomics, 2000, 64, 230-240.	1.3	125
39	Comparative Genomics and Host Resistance against Infectious Diseases. Emerging Infectious Diseases, 1999, 5, 36-47.	2.0	42
40	Endotoxin-tolerant Mice Have Mutations in Toll-like Receptor 4 (Tlr4). Journal of Experimental Medicine, 1999, 189, 615-625.	4.2	1,473
41	Functional analysis and chromosomal mapping of Gata5 , a gene encoding a zinc finger DNA-binding protein. Mammalian Genome, 1999, 10, 993-999.	1.0	37
42	Functional Expression of Nramp1 In Vitro in the Murine Macrophage Line RAW264.7. Infection and Immunity, 1999, 67, 2225-2232.	1.0	103
43	Mapping of Genetic Modulators of Natural Resistance to Infection withSalmonella typhimuriumin Wild-Derived Mice. Genomics, 1998, 47, 180-186.	1.3	72
44	Resistance to Salmonellosis in the Chicken Is Linked to <i>NRAMP1</i> and <i>TNC</i> . Genome Research, 1997, 7, 693-704.	2.4	129
45	Expression of the human <i>NRAMP1</i> gene in professional primary phagocytes: studies in blood cells and in HL-60 promyelocytic leukemia. Journal of Leukocyte Biology, 1997, 61, 96-105.	1.5	76
46	Chromosomal localization of the mouse genes encoding the ERK1 and ERK2 isoforms of MAP kinases. Mammalian Genome, 1997, 8, 141-142.	1.0	1
47	Partial conservation of the mammalian NRAMP1 syntenic group on chicken chromosome 7. Mammalian Genome, 1997, 8, 614-616.	1.0	46
48	A High-Resolution Map in the Chromosomal Region Surrounding theLpsLocus. Genomics, 1996, 31, 283-294.	1.3	44
49	Structural Organization, Sequence, and Expression of the Chicken NRAMP1 Gene Encoding the Natural Resistance-Associated Macrophage Protein 1. DNA and Cell Biology, 1996, 15, 113-123.	0.9	35
50	Genomic Structure, Promoter Sequence, and Induction of Expression of the Mouse Nramp1 Gene in Macrophages. Genomics, 1995, 27, 9-19.	1.3	98
51	Genetic control of host resistance to infection. Trends in Genetics, 1994, 10, 365-371.	2.9	107
52	Characterization of a Region-Specific Library of Microclones in the Vicinity of the Bcg and splotch Loci on Mouse Chromosome 1. Genomics, 1994, 19, 163-166.	1.3	6
53	Haplotype Mapping and Sequence Analysis of the Mouse Nramp Gene Predict Susceptibility to Infection with Intracellular Parasites. Genomics, 1994, 23, 51-61.	1.3	252
54	Genes encoding the H,K-ATPase ? and Na,K-ATPase ?3 subunits are linked on mouse Chromosome 7 and human Chromosome 19. Mammalian Genome, 1993, 4, 644-649.	1.0	7

#	Article	IF	CITATIONS
55	High-Resolution Linkage Map in the Vicinity of the Host Resistance Locus Bcg. Genomics, 1993, 16, 655-663.	1.3	68
56	Physical Delineation of the Minimal Chromosomal Segment Encompassing the Murine Host Resistance Locus Bcg. Genomics, 1993, 17, 667-675.	1.3	43
57	Natural resistance to infection with intracellular parasites: Isolation of a candidate for Bcg. Cell, 1993, 73, 469-485.	13.5	1,119
58	Identification and mapping of six microdissected genomic DNA probes to the proximal region of mouse chromosome 1. Genomics, 1992, 14, 32-37.	1.3	14
59	The host resistance locus Bcg is tightly linked to a group of cytoskeleton-associated protein genes that include villin and desmin. Genomics, 1991, 10, 356-364.	1.3	40
60	Molecular characterization of a deletion encompassing the splotch mutation on mouse chromosome 1. Genomics, 1991, 10, 89-93.	1.3	55
61	Immunogenetics of Mycobacterial Infections: Mouse-Human Homologies. Journal of Infectious Diseases, 1990, 161, 634-639.	1.9	28