
Meng-Ling Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial <i>UQCRC1</i> mutations cause autosomal dominant parkinsonism with polyneuropathy. Brain, 2020, 143, 3352-3373.	7.6	37
2	A clinical and genetic study of earlyâ€onset and familial parkinsonism in taiwan: An integrated approach combining gene dosage analysis and nextâ€generation sequencing. Movement Disorders, 2019, 34, 506-515.	3.9	71
3	LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson's disease: a review. Journal of Biomedical Science, 2018, 25, 52.	7.0	29
4	Lack of <i>TMEM230</i> mutations in patients with familial and sporadic Parkinson's disease in a Taiwanese population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 751-756.	1.7	9
5	Lack of RAB39B mutations in early-onset and familial Parkinson's disease in a Taiwanese cohort. Neurobiology of Aging, 2017, 50, 169.e3-169.e4.	3.1	9
6	Clinical heterogeneity of LRRK2 p.I2012T mutation. Parkinsonism and Related Disorders, 2016, 33, 36-43.	2.2	17
7	Lovastatin protects neurite degeneration in <i>LRRK2-G2019S</i> parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3β activity. Human Molecular Genetics, 2016, 25, 1965-1978.	2.9	45
8	COQ2 p.V393A variant, rs148156462, is not associated with Parkinson's disease in a Taiwanese population. Neurobiology of Aging, 2015, 36, 546.e17-546.e18.	3.1	4
9	Mutational Analysis of Angiogenin Gene in Parkinson's Disease. PLoS ONE, 2014, 9, e112661.	2.5	6
10	BST1 rs11724635 interacts with environmental factors to increase the risk of Parkinson's disease in a Taiwanese population. Parkinsonism and Related Disorders, 2014, 20, 280-283.	2.2	28
11	Vitamin D receptor genetic variants and Parkinson's disease in a Taiwanese population. Neurobiology of Aging, 2014, 35, 1212.e11-1212.e13.	3.1	31
12	RIT2 variant is not associated with Parkinson's disease in a Taiwanese population. Neurobiology of Aging, 2013, 34, 2236.e1-2236.e3.	3.1	11
13	Mutational analysis of FBXO7 gene in Parkinson's disease in a Taiwanese population. Neurobiology of Aging, 2013, 34, 1713.e1-1713.e4.	3.1	18
14	Reaffirmation of GAK, but not HLAâ€ĐRA, as a Parkinson's disease susceptibility gene in a Taiwanese population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 841-846.	1.7	14
15	Lrrk2 S1647T and BDNF V66M interact with environmental factors to increase risk of Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 84-88.	2.2	38
16	Novel variant Pro143Ala in HTRA2 contributes to Parkinson's disease by inducing hyperphosphorylation of HTRA2 protein in mitochondria. Human Genetics, 2011, 130, 817-827.	3.8	54
17	Synthesis of Antiâ€Microtubule <i>N</i> â€{2â€Arylindolâ€7â€yl)benzenesulfonamide Derivatives and Their Antitumor Mechanisms. ChemMedChem, 2010, 5, 1489-1497.	3.2	14
18	Multiple <i>LRRK2</i> variants modulate risk of Parkinson disease: a Chinese multicenter study. Human Mutation, 2010, 31, n/a-n/a.	2.5	106

#	Article	IF	CITATIONS
19	A novel neuropsychiatric phenotype of KCNJ2 mutation in one Taiwanese family with Andersen–Tawil syndrome. Journal of Human Genetics, 2010, 55, 186-188.	2.3	25
20	Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Annals of Neurology, 2008, 64, 88-92.	5.3	207
21	Do β-blockers affect the diagnostic sensitivity of dobutamine stress thallium-201 single photon emission computed tomographic imaging?. Journal of Nuclear Cardiology, 1998, 5, 34-39.	2.1	20