Mathilde Hagens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086610/publications.pdf

Version: 2024-02-01

687220 1058333 16 577 13 14 citations h-index g-index papers 27 27 27 795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ocean Alkalinity, Buffering and Biogeochemical Processes. Reviews of Geophysics, 2020, 58, e2019RG000681.	9.0	124
2	Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica Et Cosmochimica Acta, 2017, 207, 256-276.	1.6	95
3	Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences, 2015, 12, 1561-1583.	1.3	75
4	Post-depositional formation of vivianite-type minerals alters sediment phosphorus records. Biogeosciences, 2018, 15, 861-883.	1.3	35
5	Molybdenum dynamics in sediments of a seasonally-hypoxic coastal marine basin. Chemical Geology, 2017, 466, 627-640.	1.4	33
6	Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes?. Global Change Biology, 2022, 28, 711-726.	4.2	32
7	Attributing seasonal pH variability in surface ocean waters to governing factors. Geophysical Research Letters, 2016, 43, 12,528.	1.5	31
8	Carbon sources in the North Sea evaluated by means of radium and stable carbon isotope tracers. Limnology and Oceanography, 2016, 61, 666-683.	1.6	29
9	Current estimates of K ₁ * and K ₂ * appear inconsistent with measured CO ₂ system parameters in cold oceanic regions. Ocean Science, 2020. 16. 847-862.	1.3	28
10	Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition. Geophysical Research Letters, 2014, 41, 935-941.	1.5	23
11	Generalised expressions for the response of pH to changes in ocean chemistry. Geochimica Et Cosmochimica Acta, 2016, 187, 334-349.	1.6	23
12	Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea. Biogeosciences, 2019, 16, 437-456.	1.3	18
13	Controls on the onset and termination of past hypoxia in the Baltic Sea. Palaeogeography, Palaeoecology, 2018, 490, 347-354.	1.0	17
14	Phosphorus Cycling and Burial in Sediments of a Seasonally Hypoxic Marine Basin. Estuaries and Coasts, 2018, 41, 921-939.	1.0	13
15	Editorial for special issue on "understanding soil functions – from ped to planet― European Journal of Soil Science, 2021, 72, 1493.	1.8	O
16	Understanding Alkalinity to Quantify Ocean Buffering. Eos, 2020, 101, .	0.1	0