List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086494/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Generation of circular spin current in an AB magnetic ring with vanishing net magnetization: a new prescription. Journal of Physics Condensed Matter, 2022, 34, 015801.                                | 0.7 | 0         |
| 2  | New route to enhanced figure of merit at nano scale: effect of Aubry–Andre–Harper modulation.<br>Journal Physics D: Applied Physics, 2022, 55, 085302.                                                 | 1.3 | 5         |
| 3  | Localization properties of a multi-stranded phononic ladder with FK type modulation. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2022, 423, 127813.                        | 0.9 | 2         |
| 4  | Spin filtration in an antiferromagnetic ladder. Journal of Magnetism and Magnetic Materials, 2022,<br>546, 168813.                                                                                     | 1.0 | 0         |
| 5  | Localization Properties of a Quasiperiodic Ladder under Physical Gain and Loss: Tuning of Critical<br>Points, Mixed-Phase Zone and Mobility Edge. Materials, 2022, 15, 597.                            | 1.3 | 3         |
| 6  | Thermoelectric Phenomena at Nanoscale Level. , 2022, , 241-309.                                                                                                                                        |     | 0         |
| 7  | Localization phenomena and electronic transport in irradiated Aubry–André–Harper systems. Journal<br>of Physics Condensed Matter, 2022, 34, 195303.                                                    | 0.7 | 2         |
| 8  | Mini band gap generation in magnetic beta-borophene: effects of optical phonon interaction. Journal<br>Physics D: Applied Physics, 2022, 55, 255302.                                                   | 1.3 | 5         |
| 9  | Enhanced current rectification in graphene nanoribbons: effects of geometries and orientations of nanopores. Nanotechnology, 2022, 33, 255704.                                                         | 1.3 | 5         |
| 10 | Magnetic response of interacting electrons in a spatially non-uniform disordered multi-channel system: exact and mean-field results. European Physical Journal Plus, 2022, 137, 1.                     | 1.2 | 2         |
| 11 | Spin-dependent transport in a driven non-collinear antiferromagnetic fractal network. Journal of<br>Physics Condensed Matter, 2022, , .                                                                | 0.7 | 0         |
| 12 | Thermoelectric phenomena of the molecular structure of a Thiolated Arylethynylene with a<br>9,10-Dihydroanthracene (AH) core. European Physical Journal Plus, 2022, 137, .                             | 1.2 | 0         |
| 13 | Magnetoresistive effect in a quantum heterostructure with helical spacer: interplay between helicity and external electric field. Journal of Physics Condensed Matter, 2022, 34, 305301.               | 0.7 | 1         |
| 14 | Favorable thermoelectric performance in a Rashba spin-orbit coupled ac-driven graphene nanoribbon.<br>Carbon, 2021, 172, 302-307.                                                                      | 5.4 | 12        |
| 15 | A new prescription to achieve a high degree of spin polarization in a spin–orbit coupled quantum ring:<br>efficient engineering by irradiation. Journal of Physics Condensed Matter, 2021, 33, 145305. | 0.7 | 0         |
| 16 | Spin Dependent Transport through Driven Magnetic System with Aubry-Andre-Harper Modulation.<br>Applied Sciences (Switzerland), 2021, 11, 2309.                                                         | 1.3 | 6         |
| 17 | Spin polarization in an ac-driven magnetic material with vanishing net magnetization: a new proposal.<br>Journal Physics D: Applied Physics, 2021, 54, 215301.                                         | 1.3 | 2         |
| 18 | Selective spin transmission through a driven quantum system: A new prescription. Journal of Applied Physics, 2021, 129, 123902.                                                                        | 1.1 | 6         |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Conformational effect on spin filtration through a multi-terminal magnetic helix. Materials Today:<br>Proceedings, 2021, 47, 4288-4288.                                                         | 0.9 | 0         |
| 20 | Circular charge and spin currents in a spatially varying Rashba ring in presence of Aharonov-Bohm<br>flux. Materials Today: Proceedings, 2021, , .                                              | 0.9 | 2         |
| 21 | Possible route to efficient thermoelectric applications in a driven fractal network. Scientific Reports, 2021, 11, 17049.                                                                       | 1.6 | 5         |
| 22 | Possible Routes to Obtain Enhanced Magnetoresistance in a Driven Quantum Heterostructure with a<br>Quasi-Periodic Spacer. Micromachines, 2021, 12, 1021.                                        | 1.4 | 1         |
| 23 | Spin selective electron transmission through a layered structure subjected to light irradiation:<br>Efficient engineering. Europhysics Letters, 2021, 136, 37004.                               | 0.7 | Ο         |
| 24 | Non-volatile reconfigurable spin logic device: parallel operations. Journal Physics D: Applied Physics, 2021, 54, 095001.                                                                       | 1.3 | 2         |
| 25 | An ordered-disordered separated graphene nanoribbon: high thermoelectric performance. Journal<br>Physics D: Applied Physics, 2021, 54, 025301.                                                  | 1.3 | 5         |
| 26 | Controlled thermoelectric performance in a nanojunction: A theoretical approach. Journal of Applied Physics, 2020, 127, 024302.                                                                 | 1.1 | 2         |
| 27 | Fractal lattice as an efficient thermoelectric device. Journal of Physics: Conference Series, 2020, 1579, 012004.                                                                               | 0.3 | 1         |
| 28 | Spin selective transmission through a multi-terminal Rashba ring with AAH modulation. Journal of<br>Physics: Conference Series, 2020, 1579, 012017.                                             | 0.3 | 0         |
| 29 | A driven ferromagnetic chain with binary hopping as an efficient spin polarizer. Journal of Physics:<br>Conference Series, 2020, 1579, 012015.                                                  | 0.3 | 0         |
| 30 | Spectral features of one dimensional phononic quasicrystals. Journal of Physics: Conference Series, 2020, 1579, 012018.                                                                         | 0.3 | 0         |
| 31 | Engineering spin polarization in a driven multistranded magnetic quantum network. Physical Review B,<br>2020, 102, .                                                                            | 1.1 | 9         |
| 32 | More current with less particles due to power-law hopping. Journal of Physics Condensed Matter, 2020, 32, 025303.                                                                               | 0.7 | 4         |
| 33 | Magnetotransport in fractal network with loop sub-structures: Anisotropic effect and<br>delocalization. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126378. | 0.9 | 5         |
| 34 | Manipulation of circular currents in a coupled ring system: effects of connectivity and non-uniform disorder. Journal of Physics Condensed Matter, 2020, 32, 325303.                            | 0.7 | 4         |
| 35 | Flux-driven circular current and near-zero field magnetic response in an Aubry ring: High-to-low conducting switching action. Europhysics Letters, 2020, 129, 47002.                            | 0.7 | 6         |
| 36 | Can a sample having zero net magnetization produce polarized spin current?. Journal of Physics<br>Condensed Matter, 2020, 32, 505803.                                                           | 0.7 | 5         |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Magnetic response of interacting electrons in an ordered-disordered separated system: An exact result. AIP Conference Proceedings, 2020, , .                                                             | 0.3 | 0         |
| 38 | Generating pure spin current using spin battery: Effects of coupling and temperature. AIP Conference Proceedings, 2020, , .                                                                              | 0.3 | 0         |
| 39 | Electronic transport through a driven quantum wire: possible tuning of junction current, circular current and induced local magnetic field. Journal of Physics Condensed Matter, 2020, 33, 045301.       | 0.7 | 2         |
| 40 | High figure of merit in an  ac driven graphene nanoribbon. Journal of Physics: Conference Series, 2020,<br>1579, 012005.                                                                                 | 0.3 | 1         |
| 41 | Localization to delocalization transition in a double stranded helical geometry: effects of conformation, transverse electric field and dynamics. Journal of Physics Condensed Matter, 2020, 32, 505301. | 0.7 | 5         |
| 42 | Unconventional localization phenomena in a spatially non-uniform disordered material. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2019, 106, 312-318.                                      | 1.3 | 6         |
| 43 | Particle current rectification in a quasi-periodic double-stranded ladder. Journal Physics D: Applied Physics, 2019, 52, 465304.                                                                         | 1.3 | 14        |
| 44 | New proposal for efficient energy conversion in a molecular junction with multiple loops. Chemical Physics Letters, 2019, 731, 136601.                                                                   | 1.2 | 5         |
| 45 | Relativistic Anyon Beam: Construction and Properties. Physical Review Letters, 2019, 123, 164801.                                                                                                        | 2.9 | 3         |
| 46 | Thermal Properties of Ordered and Disordered DNA Chains: Efficient Energy Conversion.<br>ChemPhysChem, 2019, 20, 3346-3353.                                                                              | 1.0 | 7         |
| 47 | Spin-selective transmission through a single-stranded magnetic helix. Physical Review B, 2019, 100, .                                                                                                    | 1.1 | 22        |
| 48 | Thermoelectricity in graphene nanoribbons: Structural effects of nanopores. Superlattices and Microstructures, 2019, 136, 106264.                                                                        | 1.4 | 8         |
| 49 | Possible Routes for Efficient Thermoâ€Electric Energy Conversion in a Molecular Junction.<br>ChemPhysChem, 2019, 20, 848-860.                                                                            | 1.0 | 12        |
| 50 | Can a helical molecule be an efficient functional element to meet the present requirement of thermoelectric efficiency?. Europhysics Letters, 2019, 126, 27003.                                          | 0.7 | 7         |
| 51 | A comparative study of spin polarization between square and triangular antidots in graphene nanoribbon. AIP Conference Proceedings, 2019, , .                                                            | 0.3 | 0         |
| 52 | Localization transitions and formation of mixed phase in a two-stranded ladder network modulated with incommensurate site potentials. AIP Conference Proceedings, 2019, , .                              | 0.3 | 0         |
| 53 | Engineering magnetoresistance: a new perspective. Journal of Physics Condensed Matter, 2019, 31, 355303.                                                                                                 | 0.7 | 8         |
| 54 | Study of thermopower in a 1D lattice: Role of aperiodicity. AIP Conference Proceedings, 2019, , .                                                                                                        | 0.3 | 0         |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Controlled charge and spin current rectifications in a spin polarized device. Journal of Magnetism and Magnetic Materials, 2019, 484, 408-417.                                       | 1.0 | 17        |
| 56 | Quantum ring for thermoelectric power generation: Interplay between Aharonov-Bohm flux and disorder. AIP Conference Proceedings, 2019, , .                                           | 0.3 | 0         |
| 57 | Bias-induced circular spin current: Effects of environmental dephasing and disorder. Physical Review<br>B, 2019, 100, .                                                              | 1.1 | 10        |
| 58 | Tight-binding quantum network with cosine modulations: electronic localization and delocalization.<br>European Physical Journal B, 2019, 92, 1.                                      | 0.6 | 15        |
| 59 | Anomalous transport through algebraically localized states in one dimension. Physical Review B, 2019, 100, .                                                                         | 1.1 | 27        |
| 60 | All-spin logic operations: Memory device and reconfigurable computing. Europhysics Letters, 2018, 121, 38004.                                                                        | 0.7 | 21        |
| 61 | Analytical study of nano-scale logical operations. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101, 151-156.                                                        | 1.3 | 0         |
| 62 | Logical operations using phenyl ring. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 420-422.                                                       | 0.9 | 6         |
| 63 | Controlled engineering of spin-polarized transport properties in a zigzag graphene nanojunction.<br>Europhysics Letters, 2018, 124, 17005.                                           | 0.7 | 12        |
| 64 | Unconventional charge and spin-dependent transport properties of a graphene nanoribbon with line-disorder. Europhysics Letters, 2018, 124, 57003.                                    | 0.7 | 9         |
| 65 | Simultaneous spin-based Boolean logic operations with reprogrammable functionality. Europhysics<br>Letters, 2018, 123, 58008.                                                        | 0.7 | 3         |
| 66 | Interface sensitivity on spin transport through a three-terminal graphene nanoribbon. Superlattices and Microstructures, 2018, 120, 650-658.                                         | 1.4 | 11        |
| 67 | Charge-based re-programmable logic device with built-in memory: New era in molecular electronics.<br>Organic Electronics, 2018, 62, 454-458.                                         | 1.4 | 5         |
| 68 | Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 221-226. | 0.9 | 4         |
| 69 | Modulation of circular current and associated magnetic field in a molecular junction: A new approach. Scientific Reports, 2017, 7, 43343.                                            | 1.6 | 24        |
| 70 | Phase controlled metal–insulator transition in multi-leg quasiperiodic optical lattices. Annals of<br>Physics, 2017, 382, 150-159.                                                   | 1.0 | 17        |
| 71 | Externally controlled high degree of spin polarization and spin inversion in a conducting junction:<br>Two new approaches. Scientific Reports, 2017, 7, 14313.                       | 1.6 | 42        |
| 72 | High degree of current rectification at nanoscale level. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 275-278.                                                   | 1.3 | 10        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Anomalous magnetic response of a quasi-periodic mesoscopic ring in presence of Rashba and<br>Dresselhaus spin-orbit interactions. European Physical Journal B, 2016, 89, 1.                                                          | 0.6 | 16        |
| 74 | Circulating persistent current and induced magnetic field in a fractal network. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1741-1749.                                                           | 0.9 | 5         |
| 75 | Selective spin transport through a quantum heterostructure: Transfer matrix method. International<br>Journal of Modern Physics B, 2016, 30, 1650184.                                                                                 | 1.0 | 7         |
| 76 | Circulating current in 1D Hubbard rings with long-range hopping: Comparison between exact<br>diagonalization method and mean-field approach. Physica E: Low-Dimensional Systems and<br>Nanostructures, 2016, 84, 118-134.            | 1.3 | 5         |
| 77 | Magnetic response of non-interacting and interacting electrons in a Möbius strip. Superlattices and Microstructures, 2016, 100, 1081-1093.                                                                                           | 1.4 | 5         |
| 78 | Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with<br>spin–orbit interactions: Prediction of spin–orbit coupling and on-site energy. Annals of Physics, 2016,<br>375, 337-350.            | 1.0 | 12        |
| 79 | Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field:<br>Controlled electron transport. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83,<br>358-364.                   | 1.3 | 6         |
| 80 | Metal–insulator transition in an one-dimensional half-filled interacting mesoscopic ring with<br>spinless fermions: Exact results. Physics Letters, Section A: General, Atomic and Solid State Physics,<br>2016, 380, 1450-1454.     | 0.9 | 3         |
| 81 | Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire. Journal of Applied Physics, 2015, 117, 024306.                                                                                 | 1.1 | 28        |
| 82 | Externally controlled selective spin transfer through a two-terminal bridge setup. European Physical<br>Journal B, 2015, 88, 1.                                                                                                      | 0.6 | 6         |
| 83 | Conformation dependent magnetotransport in a single handed helical geometry. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2015, 379, 2848-2852.                                                           | 0.9 | 1         |
| 84 | Curvature effect on spin polarization in a three-terminal geometry in presence of Rashba spin–orbit<br>interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 361-366.                         | 0.9 | 23        |
| 85 | Electric field induced localization phenomena in a ladder network with superlattice configuration:<br>Effect of backbone environment. AIP Advances, 2014, 4, 097126.                                                                 | 0.6 | 6         |
| 86 | Persistent charge and spin currents in a quantum ring using Green׳s function technique: Interplay<br>between magnetic flux and spin–orbit interactions. Physica E: Low-Dimensional Systems and<br>Nanostructures, 2014, 64, 169-177. | 1.3 | 8         |
| 87 | Theoretical verification of experimentally obtained conformation-dependent electronic conductance<br>in a biphenyl molecule. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 61, 125-128.                               | 1.3 | 9         |
| 88 | Conformation-dependent electron transport through a biphenyl molecule: circular current and related issues. European Physical Journal B, 2013, 86, 1.                                                                                | 0.6 | 17        |
| 89 | Mobility edge phenomenon in a Hubbard chain: A mean field study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1205-1209.                                                                          | 0.9 | 21        |
| 90 | Positional dependence of energy gap on line defect in armchair graphene nanoribbons: Two-terminal transport and related issues. Journal of Applied Physics, 2013, 114, .                                                             | 1,1 | 27        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Persistent current in an ordered-disordered separated cylinder. , 2013, , .                                                                                                                                 |     | 1         |
| 92  | Spin Hall Effect in a kagome lattice. , 2013, , .                                                                                                                                                           |     | 0         |
| 93  | Spin-orbit interaction induced spin selective transmission through a multi-terminal mesoscopic ring.<br>Journal of Applied Physics, 2013, 114, 164318.                                                      | 1.1 | 33        |
| 94  | Multi-Terminal Magneto-Transport in an Interacting Fractal Network: A Mean Field Study. Journal of<br>Computational and Theoretical Nanoscience, 2013, 10, 504-509.                                         | 0.4 | 3         |
| 95  | Magnetotransport in mesoscopic rings and cylinders: effects of electron-electron interaction and spin-orbit coupling. Nanotechnology Reviews, 2012, 1, 255-271.                                             | 2.6 | Ο         |
| 96  | Magnetic response in a zigzag carbon nanotube. European Physical Journal B, 2012, 85, 1.                                                                                                                    | 0.6 | 8         |
| 97  | Magneto-transport in a quantum network: evidence of a mesoscopic switch. European Physical<br>Journal B, 2012, 85, 1.                                                                                       | 0.6 | 5         |
| 98  | Integer quantum Hall effect in a lattice model revisited: Kubo formalism. Journal of Applied Physics, 2012, 112, 044306.                                                                                    | 1.1 | 23        |
| 99  | Interplay of magnetic field and geometry in magneto-transport of mesoscopic loops with Rashba and<br>Dresselhaus spin-orbit interactions. Journal of Applied Physics, 2012, 112, 024321.                    | 1.1 | 15        |
| 100 | Spin Hall effect in a kagome lattice driven by Rashba spin-orbit interaction. Journal of Applied Physics, 2012, 112, .                                                                                      | 1.1 | 17        |
| 101 | Integer quantum Hall effect in a square lattice revisited. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1366-1370.                                                       | 0.9 | 8         |
| 102 | A proposal for the measurement of Rashba and Dresselhaus spin–orbit interaction strengths in a<br>single sample. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2147-2150. | 0.9 | 13        |
| 103 | Spin transport through a quantum network: Effects of Rashba spin-orbit interaction and<br>Aharonov–Bohm flux. Journal of Applied Physics, 2011, 109, .                                                      | 1.1 | 31        |
| 104 | Determination of Rashba and Dresselhaus spin-orbit fields. Journal of Applied Physics, 2011, 110, .                                                                                                         | 1.1 | 30        |
| 105 | Distribution of persistent currents in a multi-arm mesoscopic ring. European Physical Journal B, 2011, 79, 209-213.                                                                                         | 0.6 | 10        |
| 106 | Logical XOR gate response in a quantum interferometer: A spin dependent transport. European<br>Physical Journal B, 2011, 80, 105-114.                                                                       | 0.6 | 29        |
| 107 | On the way to meet the experimental observation of persistent current in a mesoscopic cylinder: A mean field study. Physica Status Solidi (B): Basic Research, 2011, 248, 1933-1940.                        | 0.7 | 15        |
| 108 | Effect of dephasing on electron transport in a molecular wire: Green's function approach. Organic<br>Electronics, 2011, 12, 1017-1024.                                                                      | 1.4 | 59        |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Magnetic field induced metal-insulator transition in a kagome nanoribbon. Journal of Applied Physics, 2011, 110, 094306.                                            | 1.1 | 11        |
| 110 | Magneto-transport in a mesoscopic ring with Rashba and Dresselhaus spin-orbit interactions.<br>Europhysics Letters, 2011, 95, 57008.                                | 0.7 | 45        |
| 111 | A Mesoscopic Ring as a NOT Gate: An Exact Result. Journal of Computational and Theoretical<br>Nanoscience, 2010, 7, 594-599.                                        | 0.4 | 7         |
| 112 | Magnetic quantum wire as a spin filter: An exact study. Physics Letters, Section A: General, Atomic and<br>Solid State Physics, 2010, 374, 1522-1526.               | 0.9 | 29        |
| 113 | Multi-terminal electron transport through single phenalenyl molecule: A theoretical study. Organic<br>Electronics, 2010, 11, 1120-1128.                             | 1.4 | 37        |
| 114 | Multi-terminal quantum transport through a single benzene molecule: Evidence of a molecular transistor. Solid State Communications, 2010, 150, 1269-1274.           | 0.9 | 18        |
| 115 | Magnetic response in mesoscopic Hubbard rings: A mean field study. Solid State Communications, 2010, 150, 2212-2217.                                                | 0.9 | 26        |
| 116 | Magnetic response of interacting electrons in a fractal network: A mean-field approach. Physical<br>Review B, 2010, 82, .                                           | 1.1 | 25        |
| 117 | QUANTUM TRANSPORT THROUGH HETEROCYCLIC MOLECULES. International Journal of Modern Physics B, 2009, 23, 177-187.                                                     | 1.0 | Ο         |
| 118 | Persistent Current in Metallic Rings and Cylinders. Solid State Phenomena, 2009, 155, 87-104.                                                                       | 0.3 | 10        |
| 119 | Electron transport in a double quantum ring: Evidence of an AND gate. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 2009, 373, 4470-4474. | 0.9 | 40        |
| 120 | Electron transport through honeycomb lattice ribbons with armchair edges. Solid State<br>Communications, 2009, 149, 973-977.                                        | 0.9 | 32        |
| 121 | Quantum transport in a mesoscopic ring: Evidence of an OR gate. Solid State Communications, 2009, 149, 1684-1688.                                                   | 0.9 | 30        |
| 122 | XOR gate response in a mesoscopic ring with embedded quantum dots. Solid State Communications, 2009, 149, 1623-1627.                                                | 0.9 | 27        |
| 123 | NOR gate response in a double quantum ring: An exact result. Solid State Communications, 2009, 149, 2146-2150.                                                      | 0.9 | 31        |
| 124 | Flux-induced semiconducting behavior of a quantum network. Physical Review B, 2009, 79, .                                                                           | 1.1 | 24        |
| 125 | Fractional Periodic Persistent Current in a Twisted Normal Metal Loop: An Exact Result. Journal of Computational and Theoretical Nanoscience, 2009, 6, 187-191.     | 0.4 | 2         |
| 126 | A Mesoscopic Ring as a XNOR Gate: An Exact Result. Journal of the Physical Society of Japan, 2009, 78, 114602.                                                      | 0.7 | 22        |

8

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Anomalous Quantum Transport in a Thin Film. Journal of Nanoscience and Nanotechnology, 2009, 9, 5664-5668.                                                                                                                       | 0.9 | 2         |
| 128 | Tuning of electron transport through molecular bridge systems: A study of shot noise. International<br>Journal of Quantum Chemistry, 2008, 108, 135-141.                                                                         | 1.0 | 9         |
| 129 | Anomalous quantum transport through a thin film of varying impurity density with the distance from the film surface. Transactions of the Indian Institute of Metals, 2008, 61, 211-215.                                          | 0.7 | 0         |
| 130 | Metal-Insulator Transition in an Aperiodic Ladder Network: An Exact Result. Physical Review Letters, 2008, 101, 076803.                                                                                                          | 2.9 | 69        |
| 131 | EFFECT OF ISOMERS ON QUANTUM TRANSPORT THROUGH MOLECULAR BRIDGE SYSTEM. International Journal of Modern Physics B, 2008, 22, 247-256.                                                                                            | 1.0 | 3         |
| 132 | PERSISTENT CURRENT IN ONE-DIMENSIONAL NON-SUPERCONDUCTING MESOSCOPIC RINGS: EFFECTS OF<br>SINGLE HOPPING IMPURITY, IN-PLANE ELECTRIC FIELD AND FOREIGN ATOMS. International Journal of<br>Modern Physics B, 2008, 22, 4951-4965. | 1.0 | 3         |
| 133 | Ladder network as a mesoscopic switch: An exact result. Physical Review B, 2008, 78, .                                                                                                                                           | 1.1 | 41        |
| 134 | Electron Transport Through Molecular Bridge Systems. Journal of Nanoscience and Nanotechnology,<br>2008, 8, 4096-4100.                                                                                                           | 0.9 | 16        |
| 135 | QUANTUM TRANSPORT THROUGH SINGLE PHENALENYL MOLECULE: EFFECT OF INTERFACE STRUCTURE.<br>International Journal of Nanoscience, 2007, 06, 415-422.                                                                                 | 0.4 | 2         |
| 136 | MAGNETIC RESPONSE IN 1D NON-INTERACTING MESOSCOPIC RINGS: LONG-RANGE HOPPING IN SHORTEST PATH. International Journal of Modern Physics B, 2007, 21, 179-190.                                                                     | 1.0 | 6         |
| 137 | TOPOLOGICAL EFFECT ON PERSISTENT CURRENTS AND THE SIGN OF LOW-FIELD CURRENTS IN n-FOLD TWISTED MOEBIUS STRIPS. International Journal of Modern Physics B, 2007, 21, 3001-3016.                                                   | 1.0 | 4         |
| 138 | Quantum transport through a molecule coupled with a mesoscopic ring. Physica Scripta, 2007, 75, 62-65.                                                                                                                           | 1.2 | 22        |
| 139 | Electron transport through polycyclic hydrocarbon molecules: A study of shot noise contribution to the power spectrum. Organic Electronics, 2007, 8, 575-583.                                                                    | 1.4 | 36        |
| 140 | Effect of localizing groups on quantum transport through single conjugated molecules. Physica B:<br>Condensed Matter, 2007, 394, 33-38.                                                                                          | 1.3 | 31        |
| 141 | Quantum transport through polycyclic hydrocarbon molecules. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 2007, 366, 114-119.                                                                          | 0.9 | 56        |
| 142 | Enhancement of persistent current in mesoscopic rings and cylinders: shortest and next possible shortest higher-order hopping. Journal of Physics Condensed Matter, 2006, 18, 5349-5361.                                         | 0.7 | 28        |
| 143 | Magnetic responses in 1D mesoscopic rings and cylinders. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 31, 117-124.                                                                                               | 1.3 | 23        |
| 144 | On the role of electron correlation and disorder on persistent currents in isolated one-dimensional rings. Solid State Communications, 2005, 135, 278-283.                                                                       | 0.9 | 16        |

SANTANU K MAITI

| #   | Article                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Strange behavior of persistent currents in small Hubbard rings. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 2004, 332, 497-502. | 0.9 | 24        |
| 146 | Crack Detection in Geometrically Segmented Beams. Key Engineering Materials, 1999, 167-168, 343-353.                                                        | 0.4 | 1         |
| 147 | Quantum Transport in Bridge Systems. Solid State Phenomena, 0, 155, 71-85.                                                                                  | 0.3 | 1         |
| 148 | Thermoelectric properties of a diamond ribbon subjected to a transverse magnetic field. Europhysics<br>Letters, 0, , .                                      | 0.7 | 0         |
| 149 | Thermoelectric Effect in a Fibonacci Chain with AAH Modulation: A Theoretical Study. Annalen Der<br>Physik, 0, , 2200190.                                   | 0.9 | 0         |