Tae-Eun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086335/publications.pdf Version: 2024-02-01

TAF-FIIN DADK

#	Article	IF	CITATIONS
1	Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nature Communications, 2019, 10, 2621.	12.8	371
2	Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. PLoS ONE, 2016, 11, e0150360.	2.5	335
3	Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier <i>via</i> Transcytosis. ACS Nano, 2019, 13, 13853-13865.	14.6	326
4	A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nature Biotechnology, 2018, 36, 865-874.	17.5	310
5	Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nature Biomedical Engineering, 2020, 4, 407-420.	22.5	256
6	Major degradable polycations as carriers for DNA and siRNA. Journal of Controlled Release, 2014, 193, 74-89.	9.9	124
7	Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer's disease. Biomaterials, 2015, 38, 61-71.	11.4	106
8	Mucoadhesive Chitosan Derivatives as Novel Drug Carriers. Current Pharmaceutical Design, 2015, 21, 4285-4309.	1.9	58
9	Hydrogel Nanospike Patch as a Flexible Anti-Pathogenic Scaffold for Regulating Stem Cell Behavior. ACS Nano, 2019, 13, 11181-11193.	14.6	56
10	Tuning the Buffering Capacity of Polyethylenimine with Glycerol Molecules for Efficient Gene Delivery: Staying In or Out of the Endosomes. Macromolecular Bioscience, 2015, 15, 622-635.	4.1	54
11	3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Frontiers in Bioengineering and Biotechnology, 2019, 7, 168.	4.1	49
12	Robust chemical bonding of PMMA microfluidic devices to porous PETE membranes for reliable cytotoxicity testing of drugs. Lab on A Chip, 2019, 19, 3706-3713.	6.0	49
13	Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine, 2015, 10, 1165-1188.	3.3	48
14	Selective stimulation of caveolae-mediated endocytosis by an osmotic polymannitol-based gene transporter. Biomaterials, 2012, 33, 7272-7281.	11.4	39
15	The role of osmotic polysorbitol-based transporter in RNAi silencing via caveolae-mediated endocytosis and COX-2 expression. Biomaterials, 2012, 33, 8868-8880.	11.4	27
16	Nasal immunization with mannan-decorated mucoadhesive HPMCP microspheres containing ApxIIA toxin induces protective immunity against challenge infection with Actinobacillus pleuropneumoiae in mice. Journal of Controlled Release, 2016, 233, 114-125.	9.9	26
17	Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model. Acta Biomaterialia, 2018, 76, 154-163.	8.3	26
18	Polyxylitol-based gene carrier improves the efficiency of gene transfer through enhanced endosomal osmolysis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 525-534.	3.3	24

Tae-Eun Park

#	Article	IF	CITATIONS
19	A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. Journal of Nanobiotechnology, 2022, 20, 14.	9.1	22
20	Gene therapy for bone tissue engineering. Tissue Engineering and Regenerative Medicine, 2016, 13, 111-125.	3.7	20
21	Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination. European Journal of Pharmaceutical Sciences, 2015, 80, 16-25.	4.0	18
22	Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases. Biomedical Engineering Letters, 2021, 11, 211-216.	4.1	18
23	Engineering Human Brain Organoids: From Basic Research to Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 2020, 17, 747-757.	3.7	15
24	Soluble RANKL expression in Lactococcus lactis and investigation of its potential as an oral vaccine adjuvant. BMC Immunology, 2015, 16, 71.	2.2	14
25	Influence of Flaxseed Oil on Fecal Microbiota, Egg Quality and Fatty Acid Composition of Egg Yolks in Laying Hens. Current Microbiology, 2015, 72, 259-66.	2.2	14
26	PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPARÎ ³ at Ser273. Cells, 2020, 9, 343.	4.1	12
27	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biology, 2020, 18, e3001002.	5.6	12
28	Highly efficient gene transfection by a hyperosmotic polymannitol based gene tranporter through regulation of caveolae and COX-2 induced endocytosis. Journal of Materials Chemistry B, 2014, 2, 2666.	5.8	9
29	Efficient gene transfection to liver cells via the cellular regulation of a multifunctional polylactitol-based gene transporter. Journal of Materials Chemistry B, 2016, 4, 2208-2218.	5.8	9
30	Condensed ECM-based nanofilms on highly permeable PET membranes for robust cell-to-cell communications with improved optical clarity. Biofabrication, 2021, 13, 045020.	7.1	9
31	Image-Guided Nanoparticle-Based siRNA Delivery for Cancer Therapy. Current Pharmaceutical Design, 2015, 21, 4637-4656.	1.9	9
32	Production of Recombinant Human Growth Hormone Conjugated with a Transcytotic Peptide in Pichia pastoris for Effective Oral Protein Delivery. Molecular Biotechnology, 2015, 57, 430-438.	2.4	8
33	A high affinity kidney targeting by chitobionic acid-conjugated polysorbitol gene transporter alleviates unilateral ureteral obstruction in rats. Biomaterials, 2016, 102, 43-57.	11.4	7
34	Essential cues of engineered polymeric materials regulating gene transfer pathways. Progress in Materials Science, 2022, 128, 100961.	32.8	7
35	Mucosal Delivery of Vaccine by M Cell Targeting Strategies. Current Drug Therapy, 2014, 9, 9-20.	0.3	6
36	Biofouling-resistant tubular fluidic devices with magneto-responsive dynamic walls. Soft Matter, 2021, 17, 1715-1723.	2.7	6

Tae-Eun Park

#	Article	IF	CITATIONS
37	N-acetylglucosamine-conjugated block copolymer consisting of poly(ethylene oxide) and cationic polyaspartamide as a gene carrier for targeting vimentin-expressing cells. European Journal of Pharmaceutical Sciences, 2014, 51, 165-172.	4.0	3
38	Correction: Efficient gene transfection to liver cells via the cellular regulation of a multifunctional polylactitol-based gene transporter. Journal of Materials Chemistry B, 2016, 4, 2740-2740.	5.8	0
39	Polyethyleneimines, Degradable: Gene Carrier Design. , 2016, , 6299-6311.		0
40	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
41	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
42	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
43	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		Ο
44	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
45	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		Ο
46	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
47	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0